
ObjectDB 2.8 Developer's Guide

Copyright © 2003, 2010, 2019 ObjectDB Software. All rights reserved.

Last updated on 2019-08-12.

ObjectDB Developer's Guide

Table of Contents

Preface.. 4
Chapter 1 - Quick Tour... 5

1.1 Entity Class.. 5
1.2 Database Connection... 7
1.3 CRUD Operations... 9
1.4 What is Next?.. 12

Chapter 2 - Entity Classes.. 14
2.1 Persistable Types... 14
2.2 Entity Fields... 20
2.3 Primary Key.. 26
2.4 Generated Values.. 30
2.5 Index Definition.. 33
2.6 Schema Evolution.. 38
2.7 Persistence Unit... 40

Chapter 3 - Using JPA.. 43
3.1 Database Connection... 43
3.2 Managed Entity Objects... 47
3.3 CRUD Operations... 49

3.3.1 Storing Entities.. 50
3.3.2 Retrieving Entities... 54
3.3.3 Updating Entities... 59
3.3.4 Deleting Entities.. 61

3.4 Advanced Topics.. 63
3.4.1 Detached Entities.. 63
3.4.2 Lock Management... 66
3.4.3 Lifecycle Events... 70
3.4.4 Shared L2 Cache... 74
3.4.5 Metamodel API... 78

Chapter 4 - JPA Queries... 83
4.1 Query API... 83

4.1.1 Running Queries.. 85
4.1.2 Query Parameters.. 87
4.1.3 Named Queries.. 90

ObjectDB Developer's Guide

4.1.4 Criteria Query API.. 92
4.1.5 Setting & Tuning... 96

4.2 Query Structure... 99
4.2.1 JPQL SELECT.. 101
4.2.2 JPQL FROM... 108
4.2.3 JPQL WHERE.. 114
4.2.4 JPQL GROUP BY... 117
4.2.5 JPQL ORDER BY... 121
4.2.6 DELETE Queries... 124
4.2.7 UPDATE Queries.. 125

4.3 Query Expressions... 127
4.3.1 JPQL Literals... 129
4.3.2 JPQL Paths and Types.. 132
4.3.3 Numbers in JPQL.. 135
4.3.4 Strings in JPQL... 139
4.3.5 Date and Time in JPQL.. 144
4.3.6 Collections in JPQL... 145
4.3.7 Comparison Operators... 147
4.3.8 Logical Operators.. 152

Chapter 5 - Tools and Utilities.. 156
5.1 Database Explorer.. 156
5.2 Database Server.. 163
5.3 Class Enhancer... 166
5.4 Replication (Cluster)... 171
5.5 Online Backup.. 173
5.6 Database Doctor.. 175
5.7 Transaction Replayer... 177
5.8 BIRT Reports Driver... 178

Chapter 6 - Configuration... 183
6.1 General and Logging.. 185
6.2 Database Management.. 187
6.3 Entity Management.. 192
6.4 Schema Update.. 194
6.5 Server Configuration.. 197
6.6 Server User List... 199
6.7 SSL Configuration... 201

ObjectDB Developer's Guide Preface

Preface
Welcome to ObjectDB for Java/JPA Developer's Guide. Here you can learn how to develop database
applications using ObjectDB and JPA (Java Persistence API). The main purpose of this guide is to
make you productive with ObjectDB and JPA in a short time.

Guide Structure

This manual is divided into the following six chapters:

• Chapter 1 - Quick Tour
 Demonstrates basic database programming using ObjectDB and JPA.

• Chapter 2 - JPA Entity Classes
 Shows how to define JPA entity classes that can be persisted in ObjectDB.

• Chapter 3 - Using JPA
 Shows how to use JPA to store, retrieve, update and delete database objects.

• Chapter 4 - JPA Queries (JPQL / Criteria)
 Explains how to use the JPA Query Language (JPQL).

• Chapter 5 - Database Tools and Utilities
 Presents ObjectDB Tools: the Explorer, the Enhancer, the Doctor, etc.

• Chapter 6 - Configuration
 Describes the ObjectDB configuration and explains how to tune ObjectDB.

Prerequisite Knowledge

A prior knowledge of database programming (SQL, JDBC, ORM or JPA) is not required in order to
follow this guide, but a strong background and understanding of the Java language is essential.

Further Reading and Resources

This guide focuses mainly on practical issues in order to make the reader proficient in a short time.
After reading this guide you may want to extend your knowledge of JPA by reading a book on JPA.

4

ObjectDB Developer's Guide Chapter 1 - Quick Tour

Chapter 1 - Quick Tour
This chapter demonstrates basic ObjectDB and JPA concepts by introducing a simple example
program. After reading this chapter you should be able to write basic programs that create, open
and close ObjectDB databases and perform basic CRUD operations (Create/Store, Retrieve, Update
and Delete) on ObjectDB databases.

The example program that this chapter presents manages a simple database that contains points
in the plane. Each point is represented by an object with two int fields, x and y, that hold the
point's x and y coordinates. The program demonstrates CRUD database operations by storing,
retrieving, updating and deleting Point objects.

This chapter contains the following sections:

• Defining a JPA Entity Class

• Obtaining a JPA Database Connection

• CRUD Database Operations with JPA

• What's next?

To run the sample program of this chapter in your IDE refer to one of the following tutorials:

• Getting Started with JPA and Eclipse Tutorial

• Getting Started with JPA and NetBeans Tutorial

These tutorials provide step by step instructions on how to start using JPA in your IDE with the
ObjectDB object database. Given the simplicity of ObjectDB, that should be quick and easy even
for a novice.

1.1 Entity Class
To be able to store Point objects in the database using JPA we need to define an entity class.
A JPA entity class is a POJO (Plain Old Java Object) class, i.e. an ordinary Java class that is marked
(annotated) as having the ability to represent objects in the database. Conceptually this is similar
to serializable classes, which are marked as having the ability to be serialized.

The Point Entity Class

The following Point class, which represents points in the plane, is marked as an entity class,
and accordingly, provides the ability to store Point objects in the database and retrieve Point
objects from the database:

5

http://www.objectdb.com/tutorial/jpa/eclipse
http://www.objectdb.com/tutorial/jpa/netbeans
http://www.objectdb.com/tutorial/jpa/eclipse

ObjectDB Developer's Guide Chapter 1 - Quick Tour

package com.objectdb.tutorial;

import javax.persistence.Entity;

@Entity
public class Point {
 // Persistent Fields:
 private int x;
 private int y;

 // Constructor:
 Point (int x, int y) {
 this.x = x;
 this.y = y;
 }

 // Accessor Methods:
 public int getX() { return this.x; }
 public int getY() { return this.y; }

 // String Representation:
 @Override
 public String toString() {
 return String.format("(%d, %d)", this.x, this.y);
 }
}

As you can see above, an entity class is an ordinary Java classhe only unique JPA addition is the
@Entity annotation, which marks the class as an entity class.

An attempt to persist Point objects in the database without marking the Point class
as an entity class will cause a PersistenceException . This is similar to the
NotSerializableException that Java throws (unrelated to JPA), Java IO exceptions are
checked).

Persistent Fields in Entity Classes

Storing an entity object in the database does not store methods and code are x and y (representing
the position of the point in the plane). It is the values of these fields that are stored in the database
when an entity object is persisted.

6

ObjectDB Developer's Guide Chapter 1 - Quick Tour

Chapter 2 provides additional information on how to define entity classes, including which
persistent types can be used for persistent fields, how to define and use a primary key and what
a version field is and how to use it.

If you are already familiar with JPA you might have noticed that the Point entity class has no
primary key (@Id) field defined. As an object database, ObjectDB supports implicit object IDs,
so an explicitly defined primary key is not required. On the other hand, ObjectDB also supports
explicit JPA primary keys , including composite primary keys and automatic sequential value
generation. This is a very powerful feature of ObjectDB that is absent from other object oriented
databases.

1.2 Database Connection
In JPA a database connection is represented by the EntityManager interface. Therefore, in
order to manipulate an ObjectDB database we need an EntityManager instance. Operations that
modify database content also require an EntityTransaction instance.

Obtaining an EntityManagerFactory

Obtaining an EntityManager instance consists of two steps. First we need to obtain an instance
of EntityManagerFactory that represents the relevant database and then we can use that
factory instance to get an EntityManager instance.

JPA requires the definition of a persistence unit in an XML file in order to be able to generate an
EntityManagerFactory. But when using ObjectDB you can either define a standard persistence
unit in an XML file or you can simply provide the file path of the ObjectDB database instead:

 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("$objectdb/db/points.odb");

The createEntityManagerFactory static method expects a persistence unit name as an
argument, but when using ObjectDB, any valid database file path (absolute or relative) is also
accepted. Any string that ends with .odb or .objectdb is considered by ObjectDB to be a
database url rather than a persistence unit name.
The $objectdb special prefix represents the ObjectDB home directory (by default - the directory
in which ObjectDB is installed). If no database file exists yet at the given path ObjectDB will try
to create one.

The EntityManagerFactory is also used to close the database once we are finished using it:

7

ObjectDB Developer's Guide Chapter 1 - Quick Tour

 emf.close();

Obtaining an EntityManager

Once we have an EntityManagerFactory we can easily obtain an EntityManager
instance:

 EntityManager em = emf.createEntityManager();

The EntityManager instance represents a connection to the database. When using JPA, every
operation on a database is associated with an EntityManager. Further, in a multithreaded
application every thread usually has its own EntityManager instance while at the same time
sharing a single application-wide EntityManagerFactory.

When the connection to the database is no longer needed the EntityManager can be closed:

 em.close();

Closing an EntityManager does not close the database itself (that is the job of the factory
as previously explained). Once the EntityManager object is closed it cannot be reused. But,
the owning EntityManagerFactory instance may preserve the EntityManager's resources
(such as a database file pointer or a socket to a remote server) in a connection pool and use them
to speed up future EntityManager construction.

Using an EntityTransaction

Operations that modify database content, such as store, update, and delete should only be
performed within an active transaction.

Given an EntityManager , em, it is very easy to begin a transaction:

em.getTransaction().begin();

There is a one to one relationship between an EntityManager instance and its associated
EntityTransaction instances that the getTransaction method returns.

When a transaction is active you can invoke EntityManager methods that modify the database
content, such as persist and remove. Database updates are collected and managed in
memory and applied to the database when the transaction is committed:

8

ObjectDB Developer's Guide Chapter 1 - Quick Tour

em.getTransaction().commit();

The next section explains in more detail how to use the EntityManager and transactions for
CRUD database operations.

1.3 CRUD Operations
Given an EntityManager , em, that represents a JPA connection to the object database, we
can use it to store, retrieve, update and delete database objects.

Storing New Entity Objects

The following code fragment stores 1,000 Point objects in the database:

 em.getTransaction().begin();
 for (int i = 0; i < 1000; i++) {
 Point p = new Point(i, i);
 em.persist(p);
 }
 em.getTransaction().commit();

Operations that modify the content of the database (such as storing new objects) require an
active transaction. In the example above, every Point object is first constructed as an ordinary
Java object. It then becomes associated with an EntityManager and with its transaction (as a
managed entity) by the persist method. The new Point objects are physically stored in
the database only when the transaction is committed. The Storing Entities section in chapter 3
discusses persisting objects in the database in more detail.

JPA Queries with JPQL

We can get the number of Point objects in the database by using a simple query:

 Query q1 = em.createQuery("SELECT COUNT(p) FROM Point p");
 System.out.println("Total Points: " + q1.getSingleResult());

The query string ("SELECT COUNT(p) FROM Point p") instructs JPA to count all the Point objects in
the database. If you have used SQL you should find the syntax very familiar. JPQL, the JPA query
language, supports a SQL like syntax. This has a couple of significant advantages. First, you get the

9

ObjectDB Developer's Guide Chapter 1 - Quick Tour

power of SQL combined with the ease of use of object databases and second, a new JPA developer
with some experience with SQL can become productive very quickly.

The EntityManager object serves as the factory for Query instances. The
getSingleResult method executes the query and returns the result. It should only be used
when exactly one result value is expected (a single Long object in the query above).

Let's see another example of a query that returns a single result:

 Query q2 = em.createQuery("SELECT AVG(p.x) FROM Point p");
 System.out.println("Average X: " + q2.getSingleResult());

The new query returns a Double object reflecting the average x value of all the Point objects
in the database.

Retrieving Existing Entities

The Retrieving Entities section in chapter 3 describes several methods for retrieving entity objects
from the database using JPA. Running a JPQL query is one of them:

 TypedQuery<Point> query =
 em.createQuery("SELECT p FROM Point p", Point.class);
 List<Point> results = query.getResultList();

The above query retrieves all the Point objects from the database as a list. The TypedQuery
interface, which was introduced in JPA 2, is a type safe subinterface of Query and is usually
the preferred way to work with queries. The getResultList method executes the query and
returns the result objects. It should be used (rather than getSingleResult) when multiple
results are expected. The result list can be iterated as any ordinary Java collection.

More advanced queries, for instance, can be used to retrieve selected objects from the database
(using a WHERE clause), sort the results (using an ORDER BY clause) and even group results
(using GROUP BY and HAVING clauses). JPQL is a very powerful query language and chapter 4
of this manual describes it in detail.

Updating and Deleting Entities

JPA refers to entity objects that are associated with an EntityManager as 'managed'. A newly
constructed entity object becomes managed by an EntityManager when the persist method

10

ObjectDB Developer's Guide Chapter 1 - Quick Tour

is invoked. Objects that are retrieved from the database are managed by the EntityManager
that was used to retrieve them (e.g. as a Query factory).

To delete an object from the database, you need to obtain a managed object (usually by retrieval)
and invoke the remove method within the context of an active transaction:

 em.getTransaction().begin();
 em.remove(p); // delete entity
 em.getTransaction().commit();

In the above code, p must be a managed entity object of the EntityManager em. The entity
object is marked for deletion by the remove method and is physically deleted from the database
when the transaction is committed.

Updating an existing database object is similar. You have to obtain a managed entity object (e.g.
by retrieval) and modify it within an active transaction:

 em.getTransaction().begin();
 p.setX(p.getX() + 100); // update entity
 em.getTransaction().commit();

You may notice that em, the managing EntityManager of p, is not mentioned explicitly when p
is being updated. The EntityManager that manages an entity is responsible for automatically
detecting changes to the entity object and applying them to the database when the transaction
is committed.

The following code demonstrates processing of all the Point objects in the database:

11

ObjectDB Developer's Guide Chapter 1 - Quick Tour

 TypedQuery<Point> query =
 em.createQuery("SELECT p FROM Point p", Point.class);
 List<Point> results = query.getResultList();

 em.getTransaction().begin();
 for (Point p : results) {
 if (p.getX() >= 100) {
 em.remove(p); // delete entity
 }
 else {
 p.setX(p.getX() + 100); // update entity
 }
 }
 em.getTransaction().commit();

In the above example all the Point objects whose x coordinate is greater or equal to 100 are
deleted. All the other Point objects are updated.

Chapter 3 of this manual describes how to use JPA for database operations in more detail.

1.4 What is Next?
This chapter introduced the basic principles of using JPA with ObjectDB. You can dive into the
details by reading the other chapters of this manual. If you prefer to get started using ObjectDB
right away you can follow one of these tutorials to create and run the example program that was
described in this chapter.

• Getting Started with JPA and Eclipse Tutorial

• Getting Started with JPA and NetBeans Tutorial

These tutorials explain how to run the sample program. You can easily start your own ObjectDB/
JPA programs simply by modifying this sample program.

Reading the Next Chapters

The next three chapters provide more details on using JPA with ObjectDB:

• Chapter 2 - JPA Entity Classes

• Chapter 3 - Using JPA

• Chapter 4 - JPA Queries (JPQL / Criteria)

12

http://www.objectdb.com/tutorial/jpa/eclipse
http://www.objectdb.com/tutorial/jpa/netbeans

ObjectDB Developer's Guide Chapter 1 - Quick Tour

The last two chapters complete the picture by describing some tools and settings that are specific
to ObjectDB:

• Chapter 5 - Database Tools and Utilities

• Chapter 6 - Configuration

13

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Chapter 2 - Entity Classes
JPA Entity classes are user defined classes whose instances can be stored in a database.
To store data in an ObjectDB database using JPA you have to define entity classes that represent
your application data object model. This chapter explains how to define and use entity classes.

This chapter contains the following sections:

• JPA Persistable Types

• JPA Entity Fields

• JPA Primary Key

• Auto Generated Values

• Index Definition

• Database Schema Evolution

• JPA Persistence Unit

2.1 Persistable Types
The term persistable types refers to data types that can be used in storing data in the database.
ObjectDB supports all the JPA persistable types, which are:

• User defined classes - Entity classes, Mapped superclasses, Embeddable classes.

• Simple Java data types: Primitive types, Wrappers, String, Date and Math types.

• Multi value types - Collections, Maps and Arrays.

• Miscellaneous types: Enum types and Serializable types (user or system defined).

Note: Only instances of entity classes can be stored in the database directly. Other persistable
types can be embedded in entity classes as fields. In addition, only instances of entity classes
preserve identity and are stored only once even if they are referenced multiple times. Referencing
instances of other persistable types from multiple persistent fields would cause data duplication
in the database.

Entity Classes

An entity class is an ordinary user defined Java class whose instances can be stored in the
database. The easy way to declare a class as an entity is to mark it with the Entity annotation:

14

ObjectDB Developer's Guide Chapter 2 - Entity Classes

import javax.persistence.Entity;

@Entity
public class MyEntity {

}

Entity Class Requirements

A portable JPA entity class:

• should be a top-level class (i.e. not a nested / inner class).

• should have a public or protected no-arg constructor.

• cannot be final and cannot have final methods or final instance variables.

ObjectDB is slightly less restrictive:

• Static nested entity classes are allowed (non static inner classes are forbidden).

• Instance (non static) variables cannot be final, but classes and methods can be final.

• In most cases ObjectDB can overcome a missing no-arg constructor.

Aside from these constraints an entity class is like any other Java class. It can extend either another
entity class or a non-entity user defined class (but not system classes, such as ArrayList) and
implement any interface. It can contain constructors, methods, fields and nested types with any
access modifiers (public, protected, package or private) and it can be either concrete or abstract.

Entity Class Names

Entity classes are represented in queries by entity names. By default, the entity name is the
unqualified name of the entity class (i.e. the short class name excluding the package name). A
different entity name can be set explicitly by using the name attribute of the Entity annotation:

@Entity(name="MyName")
public class MyEntity {

}

Entity names must be unique. When two entity classes in different packages share the same class
name, explicit entity name setting is required to avoid collision.

15

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Mapped Superclasses

In JPA, classes that are declared as mapped superclasses have some of the features of entity
classes, but also some restrictions. ObjectDB, however, does not enforce these restrictions so
mapped superclasses are treated by ObjectDB as ordinary entity classes.

Mapped superclasses are really only useful in applications that use an ORM-based JPA provider
(such as Hibernate, TopLink, EclipseLink, OpenJPA, JPOX, DataNucleus, etc.).

Embeddable Classes

Embeddable classes are user defined persistable classes that function as value types. As with
other non entity types, instances of an embeddable class can only be stored in the database as
embedded objects, i.e. as part of a containing entity object.

A class is declared as embeddable by marking it with the Embeddable annotation:

@Embeddable
public class Address {
 String street;
 String city;
 String state;
 String country;
 String zip;
}

Instances of embeddable classes are always embedded in other entity objects and do not
require separate space allocation and separate store and retrieval operations. Therefore, using
embeddable classes can save space in the database and improve efficiency.

Embeddable classes, however, do not have an identity (primary key) of their own which leads to
some limitations (e.g. their instances cannot be shared by different entity objects and they cannot
be queried directly), so a decision whether to declare a class as an entity or embeddable requires
case by case consideration.

Simple Java Data Types

All the following simple Java data types are persistable:

• Primitive types: boolean, byte, short, char, int, long, float and double.

16

ObjectDB Developer's Guide Chapter 2 - Entity Classes

• Equivalent wrapper classes from package java.lang:
Boolean, Byte, Short, Character, Integer, Long, Float and Double.

• java.math.BigInteger, java.math.BigDecimal.

• java.lang.String.

• java.util.Date, java.util.Calendar,
java.sql.Date, java.sql.Time, java.sql.Timestamp.

Date and time types are discussed in more detail in the next paragraph.

Date and Time (Temporal) Types

The java.sql date and time classes represent different parts of dates and times:

• java.sql.Date - represents date only (e.g. 2019-12-31).

• java.sql.Time - represents time only (e.g. 23:59:59).

• java.sql.Timestamp - represents date and time (e.g. 2019-12-31 23:59:59).

The java.util.Date and java.util.Calendar types, on the other hand, are generic and can
represent any of the above, using the @Temporal JPA annotation:

@Entity
public class DatesAndTimes {
 // Date Only:
 java.sql.Date date1;
 @Temporal(TemporalType.DATE) java.util.Date date2
 @Temporal(TemporalType.DATE) java.util.Calendar date3;

 // Time Only:
 java.sql.Time time1;
 @Temporal(TemporalType.TIME) java.util.Date time2;
 @Temporal(TemporalType.TIME) java.util.Calendar time3;

 // Date and Time:
 java.sql.Timestamp dateAndTime1;
 @Temporal(TemporalType.TIMESTAMP) java.util.Date dateAndTime2;
 @Temporal(TemporalType.TIMESTAMP) java.util.Calendar dateAndTime3;
 java.util.Date dateAndTime4; // date and time, not JPA portable
 java.util.Calendar dateAndTime5; // date and time, not JPA portable
}

17

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Persisting pure dates (without the time part), either by using the java.sql.Date type or by
specifying the @Temporal(TemporalType. DATE) annotation has several benefits:

• It saves space in the database.

• It is more efficient (storage and retrieval is faster).

• It simplifies queries on dates and ranges of dates.

When an entity is stored, its date and time fields are automatically adjusted to the requested
mode. For example, fields date1, date2 and date3 above may be initialized as new Date(),
i.e. with both date and time. Their time part is discarded when they are stored in the database.

Multi Value Types

The following multi value types are persistable:

• Collection types from package java.util: ArrayList, Vector, Stack, LinkedList,
ArrayDeque, PriorityQueue, HashSet, LinkedHashSet, TreeSet.

• Map types from package java.util: HashMap, Hashtable, WeakHashMap,
IdentityHashMap, LinkedHashMap, TreeMap and Properties.

• Arrays (including multi dimensional arrays).

Both generic (e.g. ArrayList<String>) and non generic (e.g. ArrayList) collection and map
types are supported, as long as their values (i.e. elements in collections and arrays and keys and
values in maps) are either null values or instances of persistable types.

In addition to the collection and map classes that are fully supported by ObjectDB, any other
class that implements java.util.Collection or java.util.Map can be used when storing
entities. If an unsupported collection or map type is used, ObjectDB will switch to a similar
supported type when the data is retrieved from the database.

For example, the Arrays.asList method returns an instance of an internal Java collection type
that is not supported by ObjectDB. Nevertheless, the following entity can be stored:

@Entity
public class EntityWithList {
 private List<String> words = Arrays.asList("not", "ArrayList");
}

When the entity is retrieved from the database, the list will be instantiated as an ArrayList.
Using an interface (List<String>) for the field type is essential in this case to enable switching
to the supported collection type when the entity is retrieved. Actually, JPA requires declaring

18

ObjectDB Developer's Guide Chapter 2 - Entity Classes

persistent collection and map fields only as interface types (i.e. java.util.Collection,
java.util.List, java.util.Set, java.util.Map), and that is also a good practice when
working with ObjectDB.

Proxy Classes

When entities are retrieved from the database, instances of mutable persistable system types (i.e.
collections, maps and dates) are instantiated using proxy classes that extend the original classes
and enable transparent activation and transparent persistence.

For example, a collection that is stored as an instance of java.util.ArrayList is retrieved
from the database as an instance of objectdb.java.util.ArrayList, which is a subclass of
the original java.util.ArrayList.

Most applications are not affected by this, because proxy classes extend the original Java classes
and inherit their behavior. The difference can be noticed in the debugger view and when invoking
the getClass method on an object of such proxy classes.

Enum Types

Every enum type (user defined or system defined) is persistable. But, if future portability to other
platforms is important, only values of user defined enum types should be persisted.

By default, enum values are represented internally by their ordinal numbers. Caution is required
when modifying an enum type that is already in use in an exiting database. New enum fields can
be added safely only at the end (with new higher ordinal numbers).

Alternatively, enum values can be represented internally by their names. In that case, the names
must be fixed, since changing a name can cause data loss in existing databases.

The @Enumerated annotation enables choosing the internal representation:

@Entity
public class Style {
 Color color1; // default is EnumType.ORDINAL
 @Enumerated(EnumType.ORDINAL) Color color2;
 @Enumerated(EnumType.STRING) Color color3;
}

enum Color { RED, GREEN, BLUE };

19

ObjectDB Developer's Guide Chapter 2 - Entity Classes

In the above example, values of the color1 and color2 fields are stored as ordinal numbers
(i.e. 0, 1, 2) while values of the color3 field are stored internally as strings (i.e. “RED”, “GREEN”,
“BLUE”).

Serializable Types

Every serializable class (user defined or system defined) is also persistable, but relying on
serialization in persisting data has a severe drawback in lack of portability. The internal Java
serialization format will be inaccessible to future versions of ObjectDB on other platforms
(e.g. .NET). Therefore, it is recommended to only use explicitly specified persistable types.

Serialization is disabled by default .

2.2 Entity Fields
Fields of persistable user defined classes (entity classes, embeddable classes and mapped
superclasses) can be classified into the following five groups:

• Transient fields

• Persistent fields

• Inverse (Mapped By) fields

• Primary key (ID) fields

• Version field

The first three groups (transient, persistent and inverse fields) can be used in both entity classes
and embeddable classes. However, the last two groups (primary key and version fields) can only
be used in entity classes.

Primary key fields are discussed in the Primary Key section.

Transient Fields

Transient entity fields are fields that do not participate in persistence and their values are never
stored in the database (similar to transient fields in Java that do not participate in serialization).
Static and final entity fields are always considered to be transient. Other fields can be declared
explicitly as transient using either the Java transient modifier (which also affects serialization)
or the JPA @Transient annotation (which only affects persistence):

20

ObjectDB Developer's Guide Chapter 2 - Entity Classes

@Entity
public class EntityWithTransientFields {
 static int transient1; // not persistent because of static
 final int transient2 = 0; // not persistent because of final
 transient int transient3; // not persistent because of transient
 @Transient int transient4; // not persistent because of @Transient
}

The above entity class contains only transient (non persistent) entity fields with no real content
to be stored in the database.

Persistent Fields

Every non-static non-final entity field is persistent by default unless explicitly specified otherwise
(e.g. by using the @Transient annotation).

Storing an entity object in the database does not store methods or code. Only the persistent state
of the entity object, as reflected by its persistent fields (including persistent fields that are inherited
from ancestor classes), is stored.

When an entity object is stored in the database every persistent field must contain either null or
a value of one of the supported persistable types. ObjectDB supports persistent fields with any
declared static type, including a generic java.lang.Object, as long as the type of the actual
value at runtime is persistable (or null).

Every persistent field can be marked with one of the following annotations:

• OneToOne , ManyToOne - for references of entity types.

• OneToMany , ManyToMany - for collections and maps of entity types.

• Basic - for any other persistable type.

In JPA only Basic is optional while the other annotations above are required when applicable.
ObjectDB, however, does not enforce using any of these annotations, so they are useful only for
classes that are also in use with an ORM JPA provider (such as Hibernate) or to change default
field settings. For example:

21

ObjectDB Developer's Guide Chapter 2 - Entity Classes

@Entity
public class EntityWithFieldSettings {
 @Basic(optional=false) Integer field1;
 @OneToOne(cascade=CascadeType.ALL) MyEntity field2;
 @OneToMany(fetch=FetchType.EAGER) List<MyEntity> field3;
}

The entity class declaration above demonstrates using field and relationship annotations to
change the default behavior. null values are allowed by default. Specifying optional=false
(as demonstrated for field1) causes an exception to be thrown on any attempt to store an entity
with a null value in that field. Cascade and fetch settings are explained in chapter 3.

A persistent field whose type is embeddable may optionally be marked with the @Embedded
annotation, requiring ObjectDB to verify that the type is indeed embeddable:

@Entity
public class Person {
 @Embedded Address address;
}

Inverse Fields

Inverse (or mapped by) fields contain data that is not stored as part of the entity in the database,
but is still available after retrieval by a special automatic query.

Note: Navigation through inverse fields is much less efficient than navigation through ordinary
persistent fields, since it requires running queries. Inverse fields are essential for collection
fields when using ORM JPA implementations, but not when using ObjectDB. Avoiding bidirectional
relationships and inverse fields, and maintaining two unidirectional relationships is usually much
more efficient (unless navigation in the inverse direction is rare).

The following entity classes demonstrate a bidirectional relationship:

22

ObjectDB Developer's Guide Chapter 2 - Entity Classes

@Entity
public class Employee {
 String name;
 @ManyToOne Department department;
}

@Entity
public class Department {
 @OneToMany(mappedBy="department") Set<Employee> employees;
}

The mappedBy element (above) specifies that the employees field is an inverse field rather
than a persistent field. The content of the employees set is not stored as part of a Department
entity. Instead, employees is automatically populated when a Department entity is retrieved from
the database. ObjectDB accomplishes this by effectively running the following query (where :d
represents the Department entity):

SELECT e FROM Employee e WHERE e.department = :d

The mappedBy element defines a bidirectional relationship. In a bidirectional relationship, the
side that stores the data (the Employee class in our example) is the owner. Only changes to the
owner side affect the database, since the other side is not stored and calculated by a query.

An index on the owner field may accelerate the inverse query and the load of the inverse field.
But even with an index, executing a query for loading a field is relatively slow. Therefore, if
the employees field is used often, a persistent field rather than inverse field is expected to
be more efficient. In this case, two unidirectional and unrelated relationships are managed by
the Employee and the Department classes and the application is responsible to keep them
synchronized.

Inverse fields may improve efficiency when managing very large collections that are changed
often. This is because a change in the inverse field does not require storing the entire collection
again. Only the owner side is stored in the database.

Special settings are available for inverse fields whose type is List or Map. For an inverse list field,
the order of the retrieved owner entities can be set by the OrderBy annotation:

23

ObjectDB Developer's Guide Chapter 2 - Entity Classes

@Entity
public class Department {
 @OneToMany(mappedBy="department") @OrderBy("name")
 List<Employee> employees;
}

In that case the employees field is filled with the results of the following query:

SELECT e FROM Employee e WHERE e.department = :d ORDER BY e.name

The specified field ("name") must be a sortable field of the owner side.

For an inverse map field, the keys can be extracted from the inverse query results by specifying
a selected key field using the MapKey annotation:

@Entity
public class Department {
 @OneToMany(mappedBy="department") @MapKey(name="name")
 Map<String,Employee> employees;
}

The employees map is filled with a mapping of employee names to the Employee objects to which
they pertain.

Single value inverse fields are also supported:

@Entity
public class Employee {
 @OneToOne MedicalInsurance medicalInsurance;
}

@Entity
public class MedicalInsurance {
 @OneToOne(mappedBy="medicalInsurance") Employee employee;
}

A single value inverse field is less efficient than an inverse collection or map field because no proxy
class is used and the inverse query is executed eagerly when the entity object is first accessed.

24

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Version Field

ObjectDB maintains a version number for every entity object. The initial version of a new entity
object (when stored in the database for the first time) is 1. For every transaction in which an entity
object is modified its version number is automatically increased by one. Version fields are used in
conjunction with optimistic locking (as explained in the Locking in JPA section in chapter 3).

You can expose entity object versions and make their values accessible to your application by
marking the version fields in your entity classes with the Version annotation. In addition, a
version field should have a numeric type:

@Entity public class EntityWithVersionField {
 @Version long version;
}

If a version field exists, ObjectDB automatically injects the version value into that field. Version
fields should be treated as read only by the application and no mutator methods should be written
against them. Only one version field per entity class is allowed. In fact, a single version field per
entity class hierarchy is sufficient because a version field is inherited by subclasses.

Unlike ORM JPA providers, ObjectDB always manages versions for entity objects, regardless as
to whether or not a version field is explicitly defined. Therefore, optimistic locking is supported
by ObjectDB even when a version field is not defined. Nevertheless, defining a version field has
some advantages:

• The application becomes more portable (to ORM-based JPA implementations).

• Even when entity object versions are not in use directly by the application, exposing their
values might be useful occasionally for debugging and logging.

• Version values cannot be preserved for detached entity objects (explained in chapter 3
) unless either the entity class is enhanced (explained in chapter 5) or a version field is
explicitly defined.

Property Access

When an entity is being stored to the database data is extracted from the persistent fields of that
entity. Likewise, when an entity is retrieved the persistent fields are initialized with data from the
database.

25

ObjectDB Developer's Guide Chapter 2 - Entity Classes

By default, ObjectDB accesses the fields directly, but accessing fields indirectly as properties using
get and set methods is also supported. To use property access mode, every non-transient field
must have get and set methods based on the Java bean property convention.

Property access is enabled by moving all the JPA annotations from the fields to their respective
get methods and specifying the Access annotation on the class itself:

@Entity @Access(AccessType.PROPERTY)
public static class PropertyAccess {
 private int _id;
 @Id int getId() { return _id; }
 void setId(int id) { _id = id; }

 private String str;
 String getStr() { return str; }
 void setStr(String str) { this.str = str; }
}

In some JPA implementations, such as Hibernate, using property access may have some
performance benefits. This is not the case with ObjectDB. Therefore, considering the extra
complexity that is involved in setting up and maintaining property access, the default field access
mode is usually preferred.

2.3 Primary Key
Every entity object that is stored in the database has a primary key. Once assigned, the primary
key cannot be modified. It represents the entity object as long as it exists in the database.

As an object database, ObjectDB supports implicit object IDs, so an explicitly defined primary key is
not required. But ObjectDB also supports explicit standard JPA primary keys, including composite
primary keys and automatic sequential value generation. This is a very powerful feature of
ObjectDB that is absent from other object oriented databases.

Entity Identification

Every entity object in the database is uniquely identified (and can be retrieved from the database)
by the combination of its type and its primary key. Primary key values are unique per entity class.
Instances of different entity classes, however, may share the same primary key value.

26

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Only entity objects have primary keys. Instances of other persistable types are always stored as
part of their containing entity objects and do not have their own separate identity.

Automatic Primary Key

By default the primary key is a sequential 64 bit number (long) that is set automatically by
ObjectDB for every new entity object that is stored in the database. The primary key of the first
entity object in the database is 1, the primary key of the second entity object is 2, etc. Primary
key values are not recycled when entity objects are deleted from the database.

The primary key value of an entity can be accessed by declaring a primary key field:

@Entity
public class Project {
 @Id @GeneratedValue long id; // still set automatically
 :
}

The @Id annotation marks a field as a primary key field. When a primary key field is defined
the primary key value is automatically injected into that field by ObjectDB.

The @GeneratedValue annotation specifies that the primary key is automatically allocated by
ObjectDB. Automatic value generation is discussed in detail in the Generated Values section.

Application Set Primary Key

If an entity has a primary key field that is not marked with @GeneratedValue , automatic primary
key value is not generated and the application is responsible to set a primary key by initializing
the primary key field. That must be done before any attempt to persist the entity object:

@Entity
public class Project {
 @Id long id; // must be initialized by the application
 :
}

A primary key field that is set by the application can have one of the following types:

• Primitive types: boolean, byte, short, char, int, long, float, double.

• Equivalent wrapper classes from package java.lang:
Byte, Short, Character, Integer, Long, Float, Double.

27

ObjectDB Developer's Guide Chapter 2 - Entity Classes

• java.math.BigInteger, java.math.BigDecimal.

• java.lang.String.

• java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

• Any enum type.

• Reference to an entity object.

Composite Primary Key

A composite primary key consist of multiple primary key fields. Each primary key field must be
one of the supported types listed above.

For example, the primary key of the following Project entity class consists of two fields:

@Entity @IdClass(ProjectId.class)
public class Project {
 @Id int departmentId;
 @Id long projectId;
 :
}

When an entity has multiple primary key fields, JPA requires defining a special ID class that is
attached to the entity class using the @IdClass annotation. The ID class reflects the primary
key fields and its objects can represent primary key values:

Class ProjectId {
 int departmentId;
 long projectId;
}

ObjectDB does not enforce defining ID classes. However, an ID class is required if entity objects
have to be retrieved by their primary key as shown in the Retrieving Entities section.

Embedded Primary Key

An alternate way to represent a composite primary key is to use an embeddable class:

28

ObjectDB Developer's Guide Chapter 2 - Entity Classes

@Entity
public class Project {
 @EmbeddedId ProjectId id;
 :
}

@Embeddable
Class ProjectId {
 int departmentId;
 long projectId;
}

The primary key fields are defined in an embeddable class. The entity contains a single primary
key field that is annotated with @EmbeddedId and contains an instance of that embeddable
class. When using this form a separate ID class is not defined because the embeddable class itself
can represent complete primary key values.

Obtaining the Primary Key

JPA 2 provides a generic method for getting the object ID (primary key) of a specified managed
entity object. For example:

PersistenceUnitUtil util = emf.getPersistenceUnitUtil();
Object projectId = util.getIdentifier(project);

A PersistenceUnitUtil instance is obtained from the EntityManagerFactory.
The getIdentifier method takes one argument, a managed entity object, and returns the
primary key. In case of a composite primary key - an instance of the ID class or the embeddable
class is returned.

Using Primary Keys for Object Clustering

Entity objects are physically stored in the database ordered by their primary key. Sometimes it is
useful to choose a primary key that helps clustering entity objects in the database in an efficient
way. This is especially useful when using queries that return large result sets.

As an example, consider a real time system that detects events from various sensors and stores
the details in a database. Each event is represented by an Event entity object that holds time,
sensor ID and additional details. Suppose that queries that retrieve all the events of a specified

29

ObjectDB Developer's Guide Chapter 2 - Entity Classes

sensor in a specified period are common and return thousands of Event objects. In that case the
following primary key can significantly improve query run performance:

@Entity
public class Event {
 @EmbeddedId EventId id;
 :
}

@Embeddable
Class EventId {
 int sensorId;
 Date time;
}

Because entity objects are ordered in the database by their primary key, events of the same sensor
during a period of time are stored continuously and can be collected by accessing a minimum
number of database pages.

On the other end, such a primary key requires more storage space (especially if there are many
references to Event objects in the database because references to entities hold primary key
values) and is less efficient in store operations. Therefore, all factors have to be considered and
a benchmark might be needed to evaluate the different alternatives in order to select the best
solution.

2.4 Generated Values
Marking a field with the @GeneratedValue annotation specifies that a value will be
automatically generated for that field. This is primarily intended for primary key fields but ObjectDB
also supports this annotation for non-key numeric persistent fields as well. Several different value
generation strategies can be used as explained below.

The Auto Strategy

ObjectDB maintains a special global number generator for every database. This number generator
is used to generate automatic object IDs for entity objects with no primary key fields defined (as
explained in the previous section).

30

ObjectDB Developer's Guide Chapter 2 - Entity Classes

The same number generator is also used to generate numeric values for primary key fields
annotated by @GeneratedValue with the AUTO strategy:

@Entity
public class EntityWithAutoId1 {
 @Id @GeneratedValue(strategy=GenerationType.AUTO) long id;
 :
}

AUTO is the default strategy, so the following definition is equivalent:

@Entity
public class EntityWithAutoId2 {
 @Id @GeneratedValue long id;
 :
}

During a commit the AUTO strategy uses the global number generator to generate a primary
key for every new entity object. These generated values are unique at the database level and are
never recycled, as explained in the previous section.

The Identity Strategy

The IDENTITY strategy is very similar to the AUTO strategy:

@Entity
public class EntityWithIdentityId {
 @Id @GeneratedValue(strategy=GenerationType.IDENTITY) long id;
 :
}

The IDENTITY strategy also generates an automatic value during commit for every new entity
object. The difference is that a separate identity generator is managed per type hierarchy, so
generated values are unique only per type hierarchy.

The Sequence Strategy

The sequence strategy consists of two parts - defining a named sequence and using the named
sequence in one or more fields in one or more classes. The @SequenceGenerator annotation is
used to define a sequence and accepts a name, an initial value (the default is 1) and an allocation

31

ObjectDB Developer's Guide Chapter 2 - Entity Classes

size (the default is 50). A sequence is global to the application and can be used by one or more
fields in one or more classes. The SEQUENCE strategy is used in the @GeneratedValue
annotation to attach the given field to the previously defined named sequence:

@Entity
// Define a sequence - might also be in another class:
@SequenceGenerator(name="seq", initialValue=1, allocationSize=100)
public class EntityWithSequenceId {
 // Use the sequence that is defined above:
 @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="seq")
 @Id long id;
}

Unlike AUTO and IDENTITY , the SEQUENCE strategy generates an automatic value as
soon as a new entity object is persisted (i.e. before commit). This may be useful when the primary
key value is needed earlier. To minimize round trips to the database server, IDs are allocated in
groups. The number of IDs in each allocation is specified by the allocationSize attribute.
It is possible that some of the IDs in a given allocation will not be used. Therefore, this strategy
does not guarantee there will be no gaps in sequence values.

The Table Strategy

The TABLE strategy is very similar to the SEQUENCE strategy:

@Entity
@TableGenerator(name="tab", initialValue=0, allocationSize=50)
public class EntityWithTableId {
 @GeneratedValue(strategy=GenerationType.TABLE, generator="tab")
 @Id long id;
}

ORM-based JPA providers (such as Hibernate, TopLink, EclipseLink, OpenJPA, JPOX, etc.) simulate
a sequence using a table to support this strategy. ObjectDB does not have tables, so the TABLE
and SEQUENCE strategies are almost identical.

A tiny difference is related to the initial value attribute. Whereas the SEQUENCE strategy
maintains the next sequence number to be used the TABLE strategy maintains the last value
that was used. The implication for the initialValue attribute is that if you want sequence
numbers to start with 1 in the TABLE strategy initialValue=0 has to be specified in the
@SequenceGenerator annotation.

32

ObjectDB Developer's Guide Chapter 2 - Entity Classes

2.5 Index Definition
Querying without indexes requires iteration over entity objects in the database one by one.
This may take a significant amount of time if many entity objects have to be examined. Using
proper indexes the iteration can be avoided and complex queries over millions of objects can
be executed quickly. Index management introduces overhead in terms of maintenance time and
storage space, so deciding which fields to define with indexes should be done carefully.

Single Field Index

JPA does not define a standard method for declaring indexes, but JDO does. The following entity
definition uses JDO’s @Index and @Unique annotations to define indexes:

import javax.jdo.annotations.Index;
import javax.jdo.annotations.Unique;

@Entity
public class EntityWithSimpleIndex {
 @Index String indexedField1;
 @Index(unique="true") int indexedField2; // unique
 @Index(name="i3") int indexedField3;
 @Unique Integer indexedField4; // unique
 @Unique(name="u2") Date indexedField5; // unique
}

@Unique represents a unique index that prevents duplicate values in the indexed field.
A PersistenceException is thrown on commit (or flush) if different entities have the same
value in a unique field (similar to how primary keys behave).

@Index represents either an ordinary index with no unique constraint or a unique index if
unique="true" is specified (the default is false).

The optional name attribute has no specific role but might be presented in the ObjectDB Explorer
and in logging.

When an entity object is stored in the database every indexed field must contain either null or
a value of one of the following persistable types:

• Primitive types: boolean, byte, short, char, int, long, float, double.

33

ObjectDB Developer's Guide Chapter 2 - Entity Classes

• Equivalent wrapper classes from package java.lang:
Byte, Short, Character, Integer, Long, Float, Double.

• java.math.BigInteger, java.math.BigDecimal.

• java.lang.String.

• java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

• Any enum type.

• Reference to an entity object.

• Arrays and collections that contain values of the above types (including null).

Indexes can only be defined on ordinary persistent fields (not on primary key / version fields).

Composite Index

A composite index is an index on more than one persistent field. It is defined by specifying multiple
fields in the members attribute of the the @Index or @Unique annotations:

@Entity
@Index(members={"lastName","firstName"})
public class EntityWithCompositeIndex {
 String firstName;
 String lastName;
}

When indexed fields are specified explicitly in the members attribute, as shown above, the
@Index or @Unique annotation can be attached to either the class or to any persistent field
in the class.

Multiple @Index annotations can be wrapped with an @Indices annotation:

@Entity
@Indices({
 @Index(members={"lastName","firstName"})
 @Index(members={"firstName"}, unique="true")
}
public class EntityWithCompositeIndex {
 String firstName;
 String lastName;
}

34

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Similarly, the @Uniques annotation can wrap multiple @Unique annotations.

As shown above, the members attribute can also be used for a single field index. This is useful
if you want centralize your index definitions at the top of the class and is equivalent to omitting
members and attaching the @Index annotation directly to the indexed field.

Multi Part Path Index

The members attribute is also required in order to define indexes on multi part paths:

@Entity
@Index(members={"address.city"})
public class Employee {
 String firstName;
 String lastName;
 Address address;
 :
}

@Embeddable
class Address {
 String street;
 String city;
 :
}

Indexes must always refer to values that are stored as part of the entity. Therefore, indexes on
multi part paths are only allowed when using embeddable classes as fields of embedded object
are stored as part of the containing entity.

Composite indexes on multi part paths are also allowed:

@Entity
@Index(members={"addresses.city,addresses.street"})
public class Employee {
 :
 List<Address> addresses;
 :
}

35

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Notice that the paths include a collection, so multiple values will be maintained by the index for
every entity.

Multi part paths in a composite index must have the same length. Therefore, the following index
definition is invalid:

@Entity
@Index(members={"lastName", "address.city"}) // INVALID
public class Employee {
 String firstName;
 String lastName;
 Address address;
 :
}

Indexes in Queries

ObjectDB manages a BTree for every index. A BTree is an ordered map data structure that
ObjectDB maintains in the file system rather than in memory. The keys of the BTree are all the
unique values in the indexed field (or arrays of values in composite indexes), in all the entities of
that class (including subclasses). Every key is associated with a list of references to the entities
that contain that value.

Indexes require maintenance time and consume storage space. Therefore, using indexes wisely
requires an understanding of how ObjectDB uses indexes to accelerate query execution.

Indexes are especially efficient in lookup and range queries:

 SELECT p FROM Point p WHERE p.x = 100
 SELECT p FROM Point p WHERE p.x BETWEEN 50 AND 80
 SELECT p FROM Point p WHERE p.x >= 50 AND p.x <= 80

By using an index on field x, ObjectDB can find the results using a range scan, which is very
efficient because only branches of the BTree that are relevant are iterated.

A composite index on fields x and y can also be used for the queries above. In this case the order of
the fields in the composite index definition is important, because it determines which field is used
as the BTree's primary sort key and which field is used as a secondary sort key. If x is specified
first, the BTree is ordered by x values, so a range scan on x values is supported. On the other
hand, if y is specified first, the BTree is ordered by y values, so a full BTree scan is required to

36

ObjectDB Developer's Guide Chapter 2 - Entity Classes

find all the objects with relevant x values. A full index scan is less efficient than a range scan, but
might be still more efficient than iteration over the entities data.

A composite index on fields x and y enables quick execution of the following queries:

 SELECT p FROM Point p WHERE p.x = 100 AND p.y = 100
 SELECT p FROM Point p WHERE p.x = 100 AND p.y BETWEEN 50 AND 80

For the second query above, the index order should be x first and y second.

Indexes on collections are useful in JOIN queries:

 SELECT d FROM Document d JOIN d.words w WHERE w = 'JPA'

The Document entity class contains a words field whose type is List<String>. The query
retrieves the documents that contain "JPA". An index on words will manage for every word all the
documents that contain it. Therefore, using such index, the query above can be executed by a
quick index range scan.

The same collection index can also be used for executing the following query:

 SELECT d FROM Document d JOIN d.words w WHERE LENGTH(w) >= 10

But this time a full index scan is required because the index uses the lexicographic order of the
words and is not ordered by the length of the words.

The bottom line is that if there is an index that contains all the fields in the WHERE clause of a
given query that query will run faster as it will be able to, at the very least, utilize a full index scan.
Even better, if the field order as defined in the index matches the field order used in the WHERE
clause of the query a more efficient range scan can be performed.

ObjectDB also uses indexes for sorting results and for projection:

 SELECT MIN(p.x) FROM Point p WHERE p.x < p.y ORDER BY p.y

In the above example, a composite index on fields x and y would cover all the fields in the query
(including the WHERE and ORDER BY clauses) saving the need to access the entities themselves.
Instead, because of the comparison in the WHERE clause, a full index scan would be performed.
Additionally, if field y was the first field defined in the index the results would already be produced
in the requested order (the order of the scan) thus eliminating the need for a separate sort.

37

ObjectDB Developer's Guide Chapter 2 - Entity Classes

Finally, indexes are also used in MIN and MAX queries:

 SELECT MIN(p.x), MAX(p.x) FROM Point p

Given an index on field x ObjectDB can simply return the first and last key in the BTree, without
any iteration.

2.6 Schema Evolution
Modifications to entity classes that do not change their persistent field definitions (their schema)
are transparent to ObjectDB. This includes adding, removing and modifying constructors, methods
and non persistent fields. However, additions, deletions and modifications to the persistent fields
of an entity class are detected by ObjectDB. New entity objects have to be stored in the new class
schema, and old entity objects, which were stored previously in the old class schema, have to be
converted to the new schema.

Note: In client-server mode the ObjectDB server must be restarted after a schema change.

Automatic Schema Evolution

ObjectDB implements an automatic schema evolution mechanism that enables transparent use
of old entity objects after schema change. When an entity object of an old schema is loaded into
memory it is automatically converted into an instance of the up to date entity class. This is done
automatically in memory each time the entity object is loaded. The database object is only updated
to the new schema when that entity object is stored to the database again.

Conversion of an entity object to the new schema is done on a field by field basis:

• For every field in the new schema for which there is a matching field in the old schema, the
new field in the new entity object is initialized using the value of the matching old field in
the original entity object.

• Fields in the new schema that do not have matching fields in the old schema are initialized
with default values (0, false or null).

• Fields in the old schema that do not have matching fields in the new schema are simply
ignored (and their content is lost).

A matching field is a field with the same name and either the same type or a convertible type, as
explained below. A matching field might also be located in a different place in the class hierarchy.
That makes automatic schema evolution very flexible and almost insensitive to class hierarchy

38

ObjectDB Developer's Guide Chapter 2 - Entity Classes

changes (e.g. moving fields between classes in the hierarchy, removing an intermediate class in
the hierarchy, etc.).

Convertible Types

When an old matching field is found but its type is different than the type of the new field (with
the same name), a conversion is required. If the old type is inconvertible to the new type (for
instance a change from int to Date) the fields are not considered as matching and the new field
is initialized with a default value (0, false or null).

The following type conversions are supported:

• From any numeric type to any numeric type. In this context numeric types are:
byte, short, char, int, long, float, double, Byte, Short, Character, Integer,
Long, Float, Double, BigInteger, BigDecimal and enum values that are stored as
numeric ordinal values (the default).

• From any type to Boolean or boolean
(0, null and false are converted to false, any other value is converted to true).

• From any type to String (using toString() if necessary).

• From String to numeric types including enum types (when applicable).

• From any date type to any date type.

• From any collection or array type to any collection or array type,
as long as the elements are convertible (e.g. from int[] to ArrayList<Long>).

• From any object to any collection or array that can contain that object as en element.

• From any map type to any map type as long as the keys and values are convertible
(e.g. from HashMap<Long,Long> to TreeMap).

• Any other conversion that is a valid casting operation in Java.

Renaming (Package, Class and Field)

The automatic schema evolution mechanism, as described above, is based on matching fields
by their names. When schema upgrade includes also renaming fields, classes or packages, these
changes must be specified explicitly in the configuration to avoid data loss. The Schema Update
section in chapter 6 explains how to specify such changes in the configuration file.

39

ObjectDB Developer's Guide Chapter 2 - Entity Classes

2.7 Persistence Unit
A JPA Persistence Unit is a logical grouping of user defined persistable classes (entity classes,
embeddable classes and mapped superclasses) with related settings. Defining a persistence unit
is optional when using ObjectDB, but required by JPA.

persistence.xml

Persistence units are defined in a persistence.xml file, which has to be located in the META-
INF directory in the classpath. One persistence.xml file can include definitions for one or more
persistence units. The portable way to instantiate an EntityManagerFactory in JPA (as
explained in the JPA Overview section) requires a persistence unit.

The following persistence.xml file defines one persistence unit:

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

 <persistence-unit name="my-pu">
 <description>My Persistence Unit</description>
 <provider>com.objectdb.jpa.Provider</provider>
 <mapping-file>META-INF/mappingFile.xml</mapping-file>
 <jar-file>packedEntity.jar</jar-file>
 <class>sample.MyEntity1</class>
 <class>sample.MyEntity2</class>
 <properties>
 <property name="javax.persistence.jdbc.url"
 value="objectdb://localhost/my.odb"/>
 <property name="javax.persistence.jdbc.user" value="admin"/>
 <property name="javax.persistence.jdbc.password" value="admin"/>
 </properties>
 </persistence-unit>

</persistence>

40

ObjectDB Developer's Guide Chapter 2 - Entity Classes

A persistence unit is defined by a persistence-unit XML element. The required name
attribute (“my-pu” in the example) identifies the persistence unit when instantiating an
EntityManagerFactory. It may also have optional sub elements:

• The provider element indicates which JPA implementation should be used. ObjectDB is
represented by the com.objectdb.jpa.Provider string. If not specified, the first JPA
implementation that is found is used.

• The mapping-file elements specify XML mapping files that are added to the default META-
INF/orm.xml mapping file. Every annotation that is described in this manual can be
replaced by equivalent XML in the mapping files (as explained below).

• The jar-file elements specify JAR files that should be searched for managed persistable
classes.

• The class elements specify names of managed persistable classes (see below).

• The property elements specify general properties. JPA 2 defines standard properties for
specifying database url, username and password, as demonstrated above.

XML Mapping Metadata

ObjectDB supports using XML metadata as an alternative to annotations. Both JPA mapping files
and JDO package.jdo files are supported. This manual focuses on using annotations which are
more common and usually more convenient. Details on using XML metadata can be found in the
JPA and JDO specifications and books.

Managed Persistable Classes

JPA requires registration of all the user defined persistable classes (entity classes, embeddable
classes and mapped superclasses), which are referred to by JPA as managed classes, as part of
a persistence unit definition.

Classes that are mentioned in mapping files as well as annotated classes in the JAR that contains
the persistence.xml file (if it is packed) are registered automatically. If the application is not
packed in a JAR yet, ObjectDB (as an extension) automatically registers classes under the classpath
root directory that contains the META-INF/persistence.xml file. Other classes have to be
registered explicitly by using class elements (for single class registration) or jar-file elements
(for registration of all the classes in the jar file).

ObjectDB does not enforce registration of all the managed classes. However, it might be useful
to register classes that define generators and named queries (by annotations). Otherwise, the

41

ObjectDB Developer's Guide Chapter 2 - Entity Classes

generators and named queries are available only when the containing classes become known to
ObjectDB, for example when a first instance of the class is stored in the database.

42

ObjectDB Developer's Guide Chapter 3 - Using JPA

Chapter 3 - Using JPA
This chapter explains how to manage ObjectDB databases using the Java Persistence API (JPA).

The first two pages introduce basic JPA interfaces and concepts:

• Database Connection using JPA

• Working with JPA Entity Objects

The next section explains how to use JPA for database CRUD operations:

• CRUD Operations with JPA

More advanced topics (e.g. locking and events) are discussed in the last section:

• Advanced JPA Topics

3.1 Database Connection
Working with the Java Persistence API (JPA) consists of using the following interfaces:

Overview

A connection to a database is represented by an EntityManager instance, which also provides
functionality for performing operations on a database. Many applications require multiple database
connections during their lifetime. For instance, in a web application it is common to establish
a separate database connection, using a separate EntityManager instance, for every HTTP
request.

The main role of an EntityManagerFactory instance is to support instantiation of
EntityManager instances. An EntityManagerFactory is constructed for a specific database,
and by managing resources efficiently (e.g. a pool of sockets), provides an efficient way
to construct multiple EntityManager instances for that database. The instantiation of the

43

ObjectDB Developer's Guide Chapter 3 - Using JPA

EntityManagerFactory itself might be less efficient, but it is a one time operation. Once
constructed, it can serve the entire application.

Operations that modify the content of a database require active transactions. Transactions are
managed by an EntityTransaction instance obtained from the EntityManager.

An EntityManager instance also functions as a factory for Query instances, which are needed
for executing queries on the database.

Every JPA implementation defines classes that implement these interfaces. When you use
ObjectDB you work with instances of ObjectDB classes that implement these interfaces, and
because standard JPA interfaces are used your application is portable.

EntityManagerFactory

An EntityManagerFactory instance is obtained by using a static factory method of the
JPA bootstrap class, Persistence :

 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("myDbFile.odb");

Another form of the createEntityManagerFactory method takes a map of persistence
unit properties as a second parameter:

 Map<String, String> properties = new HashMap<String, String>();
 properties.put("javax.persistence.jdbc.user", "admin");
 properties.put("javax.persistence.jdbc.password", "admin");
 EntityManagerFactory emf = Persistence.createEntityManagerFactory(
 "objectdb://localhost:6136/myDbFile.odb", properties);

The EntityManagerFactory instance, when constructed, opens the database. If the database
does not yet exist a new database file is created.

When the application is finished using the EntityManagerFactory it has to be closed:

 emf.close();

Closing the EntityManagerFactory closes the database file.

44

ObjectDB Developer's Guide Chapter 3 - Using JPA

Connection URL

The createEntityManagerFactory method takes as an argument a name of a persistence
unit. As an extension, ObjectDB enables specifying a database url (or path) directly, bypassing
the need for a persistence unit. Any string that starts with objectdb: or ends with .odb or
.objectdb is considered by ObjectDB to be a database url rather than as a persistence unit name.

To use ObjectDB embedded directly in your application (embedded mode), an absolute path
or a relative path of a local database file has to be specified (e.g. "my.odb"). Specifying the
objectdb: protocol as a prefix (e.g. "objectdb:my.odb") is optional if the database file name
extension is odb or objectdb and required for other file name extensions (e.g. "objectdb:my-
db.tmp").

To use client server mode, a url in the format objectdb://host:port/path has to be specified.
In this case, an ObjectDB Database Server is expected to be running on a machine named host
(could be domain name or IP address) and listening on the specified port (the default is 6136 when
not specified). The path indicates the location of the database file on the server, relative to the
server data root path.

Connection URL Parameters

The following parameters are supported as part of an ObjectDB connection url:

• user - for specifying a username in client server mode.

• password - for specifying a user password in client server mode.

• drop - for deleting any existing database content (useful for tests).

To connect to an ObjectDB server registered username and password have to be specified:

 EntityManagerFactory emf = Persistence.createEntityManagerFactory(
 "objectdb://localhost/myDbFile.odb;user=admin;password=admin");

This is equivalent to specifying a username and a password in the persistence unit or in a map
of properties (as demonstrated above).

To obtain a connection to an empty database (discarding existing content if any) the drop
parameter has to be specified:

 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("objectdb:myDbFile.tmp;drop");

45

ObjectDB Developer's Guide Chapter 3 - Using JPA

Getting an empty clean database easily is very useful in tests. However, to avoid the risk of losing
data - the drop parameter is ignored unless the database file name extension indicates that it is
a temporary database. By default, the tmp and temp file name extensions represent temporary
databases that can be dropped, but this can be configured.

EntityManager

An EntityManager instance may represent either a remote connection to a remote database
server (in client-server mode) or a local connection to a local database file (in embedded mode).
The functionality in both cases is the same. Given an EntityManagerFactory emf, a short
term connection to the database might have the following form:

 EntityManager em = emf.createEntityManager();
 try {
 // TODO: Use the EntityManager to access the database
 }
 finally {
 em.close();
 }

The EntityManager instance is obtained from the owning EntityManagerFactory instance.
Calling the close method is essential to release resources (such as a socket in client-server
mode) back to the owning EntityManagerFactory.

EntityManagerFactory defines another method for instantiation of EntityManager that, like
the factory, takes a map of properties as an argument. This form is useful when a user name and
a password other than the EntityManagerFactory's default user name and password have to
specified:

 Map<String, String> properties = new HashMap<String, String>();
 properties.put("javax.persistence.jdbc.user", "user1");
 properties.put("javax.persistence.jdbc.password", "user1pwd");
 EntityManager em = emf.createEntityManager(properties);

EntityTransaction

Operations that affect the content of the database (store, update, delete) must be performed
within an active transaction. The EntityTransaction interface represents and manages
database transactions. Every EntityManager holds a single attached EntityTransaction
instance that is available via the getTransaction method:

46

ObjectDB Developer's Guide Chapter 3 - Using JPA

 try {
 em.getTransaction().begin();
 // Operations that modify the database should come here.
 em.getTransaction().commit();
 }
 finally {
 if (em.getTransaction().isActive())
 em.getTransaction().rollback();
 }

A transaction is started by a call to begin and ended by a call to either commit or rollback.
All the operations on the database within these boundaries are associated with that transaction
and are kept in memory until the transaction is ended. If the transaction is ended with a rollback,
all the modifications to the database are discarded. However, by default, the in-memory instance
of the managed entity is not affected by the rollback and is not returned to its pre-modified state.

Ending a transaction with a commit propagates all the modifications physically to the database.
If for any reason a commit fails, the transaction is rolled back automatically (including rolling
back modifications that have already been propagated to the database prior to the failure) and
a RollbackException is thrown.

3.2 Managed Entity Objects
Entity objects are in-memory instances of entity classes (persistable user defined classes), which
can represent physical objects in the database.

Managing an ObjectDB Object Database using JPA requires using entity objects for many
operations, including storing, retrieving, updating and deleting database objects.

Entity Object Life Cycle

The life cycle of entity objects consists of four states: New, Managed, Removed and Detached.

47

ObjectDB Developer's Guide Chapter 3 - Using JPA

When an entity object is initially created its state is New. In this state the object is not yet
associated with an EntityManager and has no representation in the database.

An entity object becomes Managed when it is persisted to the database via an EntityManager’s
persist method, which must be invoked within an active transaction. On transaction commit,
the owning EntityManager stores the new entity object to the database. More details on storing
objects are provided in the Storing Entities section.

Entity objects retrieved from the database by an EntityManager are also in the Managed
state. Object retrieval is discussed in more detail in the Retrieving Entities section.

If a managed entity object is modified within an active transaction the change is detected by the
owning EntityManager and the update is propagated to the database on transaction commit.
 See the Updating Entities section for more information about making changes to entities.

A managed entity object can also be retrieved from the database and marked for deletion, by
using the EntityManager’s remove method within an active transaction. The entity object
changes its state from Managed to Removed, and is physically deleted from the database during
commit. More details on object deletion are provided in the Deleting Entities section.

The last state, Detached, represents entity objects that have been disconnected from the
EntityManager. For instance, all the managed objects of an EntityManager become detached
when the EntityManager is closed. Working with detached objects, including merging them back
to an EntityManager, is discussed in the Detached Entities section.

The Persistence Context

The persistence context is the collection of all the managed objects of an EntityManager. If
an entity object that has to be retrieved already exists in the persistence context, the existing

48

ObjectDB Developer's Guide Chapter 3 - Using JPA

managed entity object is returned without actually accessing the database (except retrieval by
refresh , which always requires accessing the database).

The main role of the persistence context is to make sure that a database entity object is
represented by no more than one in-memory entity object within the same EntityManager.
Every EntityManager manages its own persistence context. Therefore, a database object can
be represented by different memory entity objects in different EntityManager instances. But
retrieving the same database object more than once using the same EntityManager should
always result in the same in-memory entity object.

Another way of looking at it is that the persistence context also functions as a local cache
for a given EntityManager. ObjectDB also manages a level 2 shared cache for the
EntityManagerFactory as well as other caches as explained in the Configuration chapter.

By default, managed entity objects that have not been modified or removed during a transaction
are held in the persistence context by weak references. Therefore, when a managed entity object
is no longer in use by the application the garbage collector can discard it and it is automatically
removed from the persistence context. ObjectDB can be configured to use strong references or
soft references instead of weak references.

The contains method can check if a specified entity object is in the persistence context:

 boolean isManaged = em.contains(employee);

The persistence context can be cleared by using the clear method, as so:

 em.clear();

When the persistence context is cleared all of its managed entities become detached and any
changes to entity objects that have not been flushed to the database are discarded. Detached
entity objects are discussed in more detail in the Detached Entities section.

3.3 CRUD Operations
The following subsections explain how to use JPA for CRUD database operations:

• Storing JPA Entity Objects

• Retrieving JPA Entity Objects

• Updating JPA Entity Objects

• Deleting JPA Entity Objects

49

ObjectDB Developer's Guide Chapter 3 - Using JPA

3.3.1 Storing Entities
New entity objects can be stored in the database either explicitly by invoking the persist
method or implicitly as a result of a cascade operation.

Explicit Persist

The following code stores an instance of the Employee entity class in the database:

 Employee employee = new Employee("Samuel", "Joseph", "Wurzelbacher");
 em.getTransaction().begin();
 em.persist(employee);
 em.getTransaction().commit();

The Employee instance is constructed as an ordinary Java object and its initial state is New. An
explicit call to persist associates the object with an owner EntityManager em and
changes its state to Managed. The new entity object is stored in the database when the transaction
is committed.

An IllegalArgumentException is thrown by persist if the argument is not an instance
of an entity class. Only instances of entity classes can be stored in the database independently.
Objects of other persistable types can only be stored in the database embedded in containing
entities (as field values).

A TransactionRequiredException is thrown if there is no active transaction when persist
is called because operations that modify the database require an active transaction.

If the database already contains another entity of the same type with the same primary key, an
EntityExistsException is thrown. The exception is thrown either by persist (if that
existing entity object is currently managed by the EntityManager) or by commit.

Referenced Embedded Objects

The following code stores an Employee instance with a reference to an Address instance:

50

ObjectDB Developer's Guide Chapter 3 - Using JPA

 Employee employee = new Employee("Samuel", "Joseph", "Wurzelbacher");
 Address address = new Address("Holland", "Ohio");
 employee.setAddress(address);

 em.getTransaction().begin();
 em.persist(employee);
 em.getTransaction().commit();

Instances of persistable types other than entity classes are automatically stored embedded in
containing entity objects. Therefore, if Address is defined as an embeddable class the Employee
entity object is automatically stored in the database with its Address instance as an embedded
object.

Notice that embedded objects cannot be shared by multiple entity objects. Each containing entity
object should have its own embedded objects.

Referenced Entity Objects

On the other hand, suppose that the Address class in the code above is defined as an entity
class. In this case, the referenced Address instance is not stored in the database automatically
with the referencing Employee instance.

To avoid a dangling reference in the database, an IllegalStateException is thrown on commit
if a persisted entity object has to be stored in the database in a transaction and it references
another entity object that is not expected to be stored in the database at the end of that
transaction.

It is the application's responsibility to verify that when an object is stored in the database, the
entire closure of entity objects that are reachable from that object by navigation through persistent
reference fields is also stored in the database. This can be done either by explicit persist of every
reachable object or alternatively by setting automatic cascading persist.

Cascading Persist

Marking a reference field with CascadeType. PERSIST (or CascadeType. AL L that
also covers PERSIST) indicates that persist operations should be cascaded automatically
to entity objects that are referenced by that field (multiple entity objects can be referenced by
a collection field):

51

ObjectDB Developer's Guide Chapter 3 - Using JPA

@Entity
class Employee {
 :
 @OneToOne(cascade=CascadeType.
PERSIST
)
 private Address address;
 :
}

In the example above, the Employee entity class contains an address field that references an
instance of Address, which is another entity class. Due to the CascadeType.PERSIST setting,
when an Employee instance is persisted the operation is automatically cascaded to the referenced
Address instance which is then automatically persisted without the need for a separate persist
call for Address. Cascading may continue recursively when applicable (e.g. to entity objects that
the Address object references, etc.).

Global Cascading Persist

Instead of specifying CascadeType. PERSIST individually for every relevant reference field, it
can be specified globally for any persistent reference, either by setting the ObjectDB configuration
or in a JPA portable way, by specifying the cascade-persist XML element in the XML mapping
file:

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <cascade-persist/>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
</entity-mappings>

The mapping file has to be located either in the default location, META-INF/orm.xml,
or in another location that is specified explicitly in the persistence unit definition (in
persistence.xml).

52

ObjectDB Developer's Guide Chapter 3 - Using JPA

Batch Store

Storing a large number of entity objects requires special consideration. The combination of the
clear and flush methods can be used to save memory in large transactions:

 em.getTransaction().begin();
 for (int i = 1; i <= 1000000; i++) {
 Point point = new Point(i, i);
 em.persist(point);
 if ((i % 10000) == 0) {
 em.flush();
 em.clear();
 }
 }
 em.getTransaction().commit();

Managed entity objects consume more memory than ordinary non managed Java objects.
Therefore, holding 1,000,000 managed Point instances in the persistence context might
consume too much memory. The sample code above clears the persistence context after every
10,000 persists. Updates are flushed to the database before clearing, otherwise they would be lost.

Updates that are sent to the database using flush are considered temporary and are only
visible to the owner EntityManager until a commit. With no explicit commit , these
updates are later discarded. The combination of clear and flush enables moving the
temporary updates from memory to the database.

Note: Flushing updates to the database is sometimes also useful before executing queries in
order to get up to date results.

Storing large amount of entity objects can also be performed by multiple transactions:

53

ObjectDB Developer's Guide Chapter 3 - Using JPA

 em.getTransaction().begin();
 for (int i = 1; i <= 1000000; i++) {
 Point point = new Point(i, i);
 em.persist(point);
 if ((i % 10000) == 0) {
 em.getTransaction().commit();
 em.clear();
 em.getTransaction().begin();
 }
 }
 em.getTransaction().commit();

Splitting a batch store into multiple transactions is more efficient than using one transaction with
multiple invocations of the flush and clear methods. So using multiple transactions is preferred
when applicable.

3.3.2 Retrieving Entities
The Java Persistence API (JPA) provides various ways to retrieve objects from the database. The
retrieval of objects does not require an active transaction because it does not change the content
of the database.

The persistence context serves as a cache of retrieved entity objects. If a requested entity object
is not found in the persistence context a new object is constructed and filled with data that is
retrieved from the database (or from the L2 cache - if enabled). The new entity object is then
added to the persistence context as a managed entity object and returned to the application.

Notice that construction of a new managed object during retrieval uses the no-arg constructor.
Therefore, it is recommended to avoid unnecessary time consuming operations in no-arg
constructors of entity classes and to keep them simple as possible.

Retrieval by Class and Primary Key

Every entity object can be uniquely identified and retrieved by the combination of its class and its
primary key. Given an EntityManager em, the following code fragment demonstrates retrieval
of an Employee object whose primary key is 1:

 Employee employee = em.find(Employee.class, 1);

54

ObjectDB Developer's Guide Chapter 3 - Using JPA

Casting of the retrieved object to Employee is not required because find is defined as returning
an instance of the same class that it takes as a first argument (using generics).
An IllegalArgumentException is thrown if the specified class is not an entity class.

If the EntityManager already manages the specified entity object in its persistence context
no retrieval is required and the existing managed object is returned as is. Otherwise, the object
data is retrieved from the database and a new managed entity object with that retrieved data is
constructed and returned. If the object is not found in the database null is returned.

A similar method, getReference , can be considered the lazy version of find:

 Employee employee = em.getReference(Employee.class, 1);

The getReference method works like the find method except that if the entity object is not
already managed by the EntityManager a hollow object might be returned (null is never
returned). A hollow object is initialized with the valid primary key but all its other persistent fields
are uninitialized. The object content is retrieved from the database and the persistent fields are
initialized, lazily, when the entity object is first accessed. If the requested object does not exist an
EntityNotFoundException is thrown when the object is first accessed.

The getReference method is useful when a reference to an entity object is required but not its
content, such as when a reference to it has to be set from another entity object.

Retrieval by Eager Fetch

Retrieval of an entity object from the database might cause automatic retrieval of additional entity
objects. By default, a retrieval operation is automatically cascaded through all the non collection
and map persistent fields (i.e. through one-to-one and many-to-one relationships). Therefore,
when an entity object is retrieved, all the entity objects that are reachable from it by navigation
through non collection and map persistent fields are also retrieved. Theoretically, in some extreme
situations this might cause the retrieval of the entire database into the memory, which is usually
unacceptable.

A persistent reference field can be excluded from this automatic cascaded retrieval by using a
lazy fetch type:

55

ObjectDB Developer's Guide Chapter 3 - Using JPA

@Entity
class Employee {
 :
 @ManyToOne(fetch=FetchType.LAZY)
 private Employee manager;
 :
}

The default for non collection and map references is FetchType. EAGER , indicating that the
retrieval operation is cascaded through the field. Explicitly specifying FetchType. LAZY in
either @OneToOne or @ManyToOne annotations (currently ObjectDB does not distinguish
between the two) excludes the field from participating in retrieval cascading.

When an entity object is retrieved all its persistent fields are initialized. A persistent reference field
with the FetchType.LAZY fetch policy is initialized to reference a new managed hollow object
(unless the referenced object is already managed by the EntityManager). In the example above,
when an Employee instance is retrieved its manager field might reference a hollow Employee
instance. In a hollow object the primary key is set but other persistent fields are uninitialized until
the object fields are accessed.

On the other hand, the default fetch policy of persistent collection and map fields is
FetchType.LAZY. Therefore, by default, when an entity object is retrieved any other entity
objects that it references through its collection and map fields are not retrieved with it.

This can be changed by an explicit FetchType.EAGER setting:

@Entity
class Employee {
 :
 @ManyToMany(fetch=FetchType.EAGER)
 private Collection<Project> projects;
 :
}

Specifying FetchType. EAGER explicitly in @OneToMany or @ManyToMany annotations
(currently ObjectDB does not distinguish between the two) enables cascading retrieval for the
field. In the above example, when an Employee instance is retrieved all the referenced Project
instances are also retrieved automatically.

56

ObjectDB Developer's Guide Chapter 3 - Using JPA

Retrieval by Navigation and Access

All the persistent fields of an entity object can be accessed freely, regardless of the current fetch
policy, as long as the EntityManager is open. This also includes fields that reference entity
objects that have not been loaded from the database yet and are represented by hollow objects.
If the EntityManager is open when a hollow object is first accessed its content is automatically
retrieved from the database and all its persistent fields are initialized.

From the point of view of the developer it looks like the entire graph of objects is present in
memory. This illusion, which is based on lazy transparent activation and retrieval of objects
by ObjectDB, helps hide some of the direct interaction with the database and makes database
programming easier.

For example, after retrieving an Employee instance from the database the manager field may
include a hollow Employee entity object:

 Employee employee = em.find(Employee.class, 1);
 Employee managed = employee.getManager(); // might be hollow

If manager is hollow transparent activation occurs when it is first accessed. For example:

 String managerName = manager.getName();

Accessing a persistent field in a hollow object (e.g. the name of the manager in the example above)
causes the retrieval of missing content from the database and initialization of all the persistent
fields.

As seen, the entire graph of objects is available for navigation, regardless of the fetch policy. The
fetch policy, however, does affect performance. Eager retrieval might minimize the round trips to
the database and improve performance, but unnecessary retrieval of entity objects that are not
in use will decrease performance.

The fetch policy also affects objects that become detached (e.g. when the EntityManager is
closed). Transparent activation is not supported for detached objects. Therefore, only content that
has already been fetched from the database is available in objects that are detached.

JPA 2 introduces methods for checking if a specified entity object or a specified persistent field
is loaded. For example:

57

ObjectDB Developer's Guide Chapter 3 - Using JPA

 PersistenceUtil util = Persistence.getPersistenceUtil();
 boolean isObjectLoaded = util.isLoaded(employee);
 boolean isFieldLoaded = util.isLoaded(employee, "address");

As shown above, a PersistenceUtil instance is obtained from the static
getPersistenceUtil method. It provides two isLoaded methods - one for checking an entity
object and the other for checking a persistent field of an entity object.

Retrieval by Query

The most flexible method for retrieving objects from the database is to use queries. The official
query language of JPA is JPQL (Java Persistence Query Language). It enables retrieval of objects
from the database by using simple queries as well as complex, sophisticated ones. JPA queries
and JPQL are described in chapter 4.

Retrieval by Refresh

Managed objects can be reloaded from the database by using the refresh method:

 em.refresh(employee);

The content of the managed object in memory is discarded (including changes, if any) and replaced
by data that is retrieved from the database. This might be useful to ensure that the application
deals with the most up to date version of an entity object, just in case it might have been changed
by another EntityManager since it was retrieved.

An IllegalArgumentException is thrown by refresh if the argument is not a managed entity
(including entity objects in the New, Removed or Detached states). If the object does not exist in
the database anymore an EntityNotFoundException is thrown.

Cascading Refresh

Marking a reference field with CascadeType. REFRESH (or CascadeType. ALL , which
includes REFRESH) indicates that refresh operations should be cascaded automatically
to entity objects that are referenced by that field (multiple entity objects can be referenced by
a collection field):

58

ObjectDB Developer's Guide Chapter 3 - Using JPA

@Entity
class Employee {
 :
 @OneToOne(cascade=CascadeType.REFRESH)
 private Address address;
 :
}

In the example above, the Employee entity class contains an address field that references
an instance of Address, which is another entity class. Due to the CascadeType.REFRESH
setting, when an Employee instance is refreshed the operation is automatically cascaded to
the referenced Address instance, which is then automatically refreshed as well. Cascading may
continue recursively when applicable (e.g. to entity objects that the Address object references,
if any).

3.3.3 Updating Entities
Modifying existing entity objects that are stored in the database is based on transparent
persistence, which means that changes are detected and handled automatically.

Transparent Update

Once an entity object is retrieved from the database (no matter which way) it can simply be
modified in memory from inside an active transaction:

 Employee employee = em.find(Employee.class, 1);

 em.getTransaction().begin();
 employee.setNickname("Joe the Plumber");
 em.getTransaction().commit();

The entity object is physically updated in the database when the transaction is committed. If the
transaction is rolled back and not committed the update is discarded.

On commit the persist operation can be cascaded from all the entity objects that have to be stored
in the database, including from all the modified entity objects. Therefore, entity objects that are
referenced from modified entity objects by fields that are marked with CascadeType. PERSIST

59

ObjectDB Developer's Guide Chapter 3 - Using JPA

or CascadeType. ALL are also persisted. If global cascade persist is enabled all the reachable
entity objects that are not managed yet are also persisted.

Automatic Change Tracking

As shown above, an update is achieved by modifying a managed entity object from within an
active transaction. No EntityManager 's method is invoked to report the update. Therefore,
to be able to apply database updates on commit, ObjectDB must detect changes to managed
entities automatically. One way to detect changes is to keep a snapshot of every managed object
when it is retrieved from the database and to compare that snapshot to the actual managed object
on commit. A more efficient way to detect changes automatically is described in the Enhancer
section in chapter 5.

However, detecting changes to arrays requires using snapshots even if the entity classes are
enhanced. Therefore, for efficiency purposes, the default behavior of ObjectDB ignores array
changes when using enhanced entity classes:

 Employee employee = em.find(Employee.class, 1);

 em.getTransaction().begin();
 employee.projects[0] = new Project(); // not detected automatically
 JDOHelper.makeDirty(employee, "projects"); // reported as dirty
 em.getTransaction().commit();

As demonstrated above, array changes are not detected automatically (by default) but it is possible
to report a change explicitly by invoking the JDO's makeDirty method.

Alternatively, ObjectDB can be configured to detect array changes using snapshots as well as
when enhanced entity classes are in use.

It is usually recommended to use collections rather than arrays when using JPA. Collections are
more portable to ORM JPA implementations and provide better automatic change tracking support.

UPDATE Queries

UPDATE queries provide an alternative way for updating entity objects in the database. Modifying
objects using an UPDATE query may be useful especially when many entity objects have to be
modified in one operation. The UPDATE Queries in JPA/JPQL in chapter 4 explains how to use JPA
UPDATE queries.

60

ObjectDB Developer's Guide Chapter 3 - Using JPA

3.3.4 Deleting Entities
Existing entity objects can be deleted from the database either explicitly by invoking the remove
method or implicitly as a result of a cascade operation.

Explicit Remove

In order to delete an object from the database it has to first be retrieved (no matter which way)
and then in an active transaction, it can be deleted using the remove method:

 Employee employee = em.find(Employee.class, 1);

 em.getTransaction().begin();
 em.remove(employee);
 em.getTransaction().commit();

The entity object is physically deleted from the database when the transaction is committed.
Embedded objects that are contained in the entity object are also deleted. If the transaction is
rolled back and not committed the object is not deleted.

An IllegalArgumentException is thrown by remove if the argument is not a an instance of
an entity class or if it is a detached entity. A TransactionRequiredException is thrown if
there is no active transaction when remove is called because operations that modify the database
require an active transaction.

Cascading Remove

Marking a reference field with CascadeType. REMOVE (or CascadeType. ALL , which
includes REMOVE) indicates that remove operations should be cascaded automatically to
entity objects that are referenced by that field (multiple entity objects can be referenced by a
collection field):

@Entity
class Employee {
 :
 @OneToOne(cascade=CascadeType.REMOVE)
 private Address address;
 :
}

61

ObjectDB Developer's Guide Chapter 3 - Using JPA

In the example above, the Employee entity class contains an address field that references
an instance of Address, which is another entity class. Due to the CascadeType.REMOVE
setting, when an Employee instance is removed the operation is automatically cascaded to
the referenced Address instance, which is then automatically removed as well. Cascading may
continue recursively when applicable (e.g. to entity objects that the Address object references,
if any).

Orphan Removal

JPA 2 supports an additional and more aggressive remove cascading mode which can be specified
using the orphanRemoval element of the @OneToOne and @OneToMany annotations:

@Entity
class Employee {
 :
 @OneToOne(orphanRemoval=true)
 private Address address;
 :
}

When an Employee entity object is removed the remove operation is cascaded
to the referenced Address entity object. In this regard, orphanRemoval=true and
cascade=CascadeType.REMOVE are identical, and if orphanRemoval=true is specified,
CascadeType.REMOVE is redundant.

The difference between the two settings is in the response to disconnecting a relationship. For
example, such as when setting the address field to null or to another Address object.

• If orphanRemoval=true is specified the disconnected Address instance is automatically
removed. This is useful for cleaning up dependent objects (e.g. Address) that should not
exist without a reference from an owner object (e.g. Employee).

• If only cascade=CascadeType.REMOVE is specified no automatic action is taken since
disconnecting a relationship is not a remove operation.

To avoid dangling references as a result of orphan removal this feature should only be enabled
for fields that hold private non shared dependent objects.

Orphan removal can also be set for collection and map fields. For example:

62

ObjectDB Developer's Guide Chapter 3 - Using JPA

@Entity
class Employee {
 :
 @OneToMany(orphanRemoval=true)
 private List<Address> addresses;
 :
}

In this case, removal of an Address object from the collection leads to automatic removal of that
object from the database.

DELETE Queries

DELETE queries provide an alternative way for removing entity objects from the database. Deleting
objects using a DELETE query may be useful especially when many entity objects have to be
deleted in one operation. The DELETE Queries in JPA/JPQL in chapter 4 explains how to use JPA
DELETE queries.

3.4 Advanced Topics
This section discusses advanced JPA topics:

• Detached Entity Objects

• Locking in JPA

• JPA Lifecycle Events

• Shared (L2) Entity Cache

• JPA Metamodel API

3.4.1 Detached Entities
Detached entity objects are objects in a special state in which they are not managed by any
EntityManager but still represent objects in the database. Compared to managed entity
objects, detached objects are limited in functionality:

• Many JPA methods do not accept detached objects (e.g. lock).

• Retrieval by navigation from detached objects is not supported, so only persistent fields
that have been loaded before detachment should be used.

63

http://www.objectdb.com/java/jpa/persistence/managed#Entity_Object_Life_Cycle

ObjectDB Developer's Guide Chapter 3 - Using JPA

• Changes to detached entity objects are not stored in the database unless modified
detached objects are merged back into an EntityManager to become managed again.

Detached objects are useful in situations in which an EntityManager is not available and for
transferring objects between different EntityManager instances.

Explicit Detach

When a managed entity object is serialized and then deserialized, the deserialized entity object
(but not the original serialized object) is constructed as a detached entity object since is not
associated with any EntityManager.

In addition, in JPA 2 we can detach an entity object by using the detach method:

 em.detach(employee);

An IllegalArgumentException is thrown by detach if the argument is not an entity object.

Cascading Detach

Marking a reference field with CascadeType. DETACH (or CascadeType. ALL , which
includes DETACH) indicates that detach operations should be cascaded automatically to
entity objects that are referenced by that field (multiple entity objects can be referenced by a
collection field):

@Entity
class Employee {
 :
 @OneToOne(cascade=CascadeType.DETACH)
 private Address address;
 :
}

In the example above, the Employee entity class contains an address field that references
an instance of Address, which is another entity class. Due to the CascadeType.DETACH
setting, when an Employee instance is detached the operation is automatically cascaded to
the referenced Address instance, which is then automatically detached as well. Cascading may
continue recursively when applicable (e.g. to entity objects that the Address object references,
if any).

64

ObjectDB Developer's Guide Chapter 3 - Using JPA

Bulk Detach

The following operations clear the entire EntityManager 's persistence context and detach
all managed entity objects:

• Invocation of the close method, which closes an EntityManager.

• Invocation of the clear method, which clears an EntityManager's persistence context.

• Rolling back a transaction - either by invocation of rollback or by a commit failure.

Explicit Merge

Detached objects can be attached to any EntityManager by using the merge method:

 em.merge(employee);

The content of the specified detached entity object is copied into an existing managed entity object
with the same identity (i.e. same type and primary key). If the EntityManager does not manage
such an entity object yet a new managed entity object is constructed. The detached object itself,
however, remains unchanged and detached.

An IllegalArgumentException is thrown by merge if the argument is not an instance of an
entity class or it is a removed entity. A TransactionRequiredException is thrown if there
is no active transaction when merge is called because operations that might modify the database
require an active transaction.

Cascading Merge

Marking a reference field with CascadeType. MERGE (or CascadeType. ALL , which includes
MERGE) indicates that merge operations should be cascaded automatically to entity objects
that are referenced by that field (multiple entity objects can be referenced by a collection field):

@Entity
class Employee {
 :
 @OneToOne(cascade=CascadeType.MERGE)
 private Address address;
 :
}

65

ObjectDB Developer's Guide Chapter 3 - Using JPA

In the example above, the Employee entity class contains an address field that references
an instance of Address, which is another entity class. Due to the CascadeType.MERGE
setting, when an Employee instance is merged the operation is automatically cascaded to
the referenced Address instance, which is then automatically merged as well. Cascading may
continue recursively when applicable (e.g. to entity objects that the Address object references,
if any).

3.4.2 Lock Management
JPA 2 supports both optimistic locking and pessimistic locking. Locking is essential to avoid update
collisions resulting from simultaneous updates to the same data by two concurrent users. Locking
in ObjectDB (and in JPA) is always at the database object level, i.e. each database object is locked
separately.

Optimistic locking is applied on transaction commit. Any database object that has to be updated
or deleted is checked. An exception is thrown if it is found out that an update is being performed
on an old version of a database object, for which another update has already been committed by
another transaction.

When using ObjectDB, optimistic locking is enabled by default and fully automatic. Optimistic
locking should be the first choice for most applications, since compared to pessimistic locking it
is easier to use and more efficient.

In the rare cases in which update collision must be revealed earlier (before transaction commit)
pessimistic locking can be used. When using pessimistic locking, database objects are locked
during the transaction and lock conflicts, if they happen, are detected earlier.

Optimistic Locking

ObjectDB maintains a version number for every entity object. The initial version of a new entity
object (when it is stored in the database for the first time) is 1. In every transaction in which an
entity object is modified its version number is automatically increased by one. Version numbers
are managed internally but can be exposed by defining a version field.

During commit (and flush), ObjectDB checks every database object that has to be updated or
deleted, and compares the version number of that object in the database to the version number of
the in-memory object being updated. The transaction fails and an OptimisticLockException
is thrown if the version numbers do not match, indicating that the object has been modified by
another user (using another EntityManager) since it was retrieved by the current updater.

66

ObjectDB Developer's Guide Chapter 3 - Using JPA

Optimistic locking is completely automatic and enabled by default in ObjectDB, regardless if a
version field (which is required by some ORM JPA providers) is defined in the entity class or not.

Pessimistic Locking

The main supported pessimistic lock modes are:

• PESSIMISTIC_READ - which represents a shared lock.

• PESSIMISTIC_WRITE - which represents an exclusive lock.

Setting a Pessimistic Lock

An entity object can be locked explicitly by the lock method:

 em.lock(employee, LockModeType.PESSIMISTIC_WRITE);

The first argument is an entity object. The second argument is the requested lock mode.

A TransactionRequiredException is thrown if there is no active transaction when lock
is called because explicit locking requires an active transaction.

A LockTimeoutException is thrown if the requested pessimistic lock cannot be granted:

• A PESSIMISTIC_READ lock request fails if another user (which is represented by another
EntityManager instance) currently holds a PESSIMISTIC_WRITE lock on that database
object.

• A PESSIMISTIC_WRITE lock request fails if another user currently holds either a
PESSIMISTIC_WRITE lock or a PESSIMISTIC_READ lock on that database object.

For example, consider the following code fragment:

 em1.lock(e1, lockMode1);
 em2.lock(e2, lockMode2);

em1 and em2 are two EntityManager instances that manage the same Employee database
object, which is referenced as e1 by em1 and as e2 by em2 (notice that e1 and e2 are two in-
memory entity objects that represent one database object).

If both lockMode1 and lockMode2 are PESSIMISTIC_READ - these lock requests
should succeed. Any other combination of pessimistic lock modes, which also includes
PESSIMISTIC_WRITE, will cause a LockTimeoutException (on the second lock request).

67

ObjectDB Developer's Guide Chapter 3 - Using JPA

Pessimistic Lock Timeout

By default, when a pessimistic lock conflict occurs a LockTimeoutException is thrown
immediately. The "javax.persistence.lock.timeout" hint can be set to allow waiting for a
pessimistic lock for a specified number of milliseconds. The hint can be set in several scopes:

For the entire persistence unit - using a persistence.xml property:

 <properties>
 <property name="javax.persistence.lock.timeout" value="1000"/>
 </properties>

For an EntityManagerFactory - using the createEntityManagerFacotory method:

 Map<String,Object> properties = new HashMap();
 properties.put("javax.persistence.lock.timeout", 2000);
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("pu", properties);

For an EntityManager - using the createEntityManager method:

 Map<String,Object> properties = new HashMap();
 properties.put("javax.persistence.lock.timeout", 3000);
 EntityManager em = emf.createEntityManager(properties);

or using the setProperty method:

 em.setProperty("javax.persistence.lock.timeout", 4000);

In addition, the hint can be set for a specific retrieval operation or query.

Releasing a Pessimistic Lock

Pessimistic locks are automatically released at transaction end (using either commit or
rollback).

ObjectDB supports also releasing a lock explicitly while the transaction is active, as so:

 em.lock(employee, LockModeType.NONE);

68

ObjectDB Developer's Guide Chapter 3 - Using JPA

Other Explicit Lock Modes

In addition to the two main pessimistic modes (PESSIMISTIC_WRITE and
PESSIMISTIC_READ, which are discussed above), JPA defines additional lock modes that can
also be specified as arguments for the lock method to obtain special effects:

• OPTIMISTIC (formerly READ)

• OPTIMISTIC_FORCE_INCREMENT (formerly WRITE)

• PESSIMISTIC_FORCE_INCREMENT

Since optimistic locking is applied automatically by ObjectDB to every entity object, the
OPTIMISTIC lock mode has no effect and, if specified, is silently ignored by ObjectDB.

The OPTIMISTIC_FORCE_INCREMENT mode affects only clean (non dirty) entity objects. Explicit
lock at that mode marks the clean entity object as modified (dirty) and increases its version number
by 1.

The PESSIMISTIC_FORCE_INCREMENT mode is equivalent to the PESSIMISTIC_WRITE mode
with the addition that it marks a clean entity object as dirty and increases its version number by
one (i.e. it combines PESSIMISTIC_WRITE with OPTIMISTIC_FORCE_INCREMENT).

Locking during Retrieval

JPA 2 provides various methods for locking entity objects when they are retrieved from the
database. In addition to improving efficiency (relative to a retrieval followed by a separate lock),
these methods perform retrieval and locking as one atomic operation.

For example, the find method has a form that accepts a lock mode:

 Employee employee = em.find(
 Employee.class, 1, LockModeType.PESSIMISTIC_WRITE);

Similarly, the refresh method can also receive a lock mode:

 em.refresh(employee, LockModeType.PESSIMISTIC_WRITE);

A lock mode can also be set for a query in order to lock all the query result objects.

When a retrieval operation includes pessimistic locking, timeout can be specified as a property.
For example:

69

ObjectDB Developer's Guide Chapter 3 - Using JPA

 Map<String,Object> properties = new HashMap();
 properties.put("javax.persistence.lock.timeout", 2000);

 Employee employee = em.find(
 Employee.class, 1, LockModeType.PESSIMISTIC_WRITE, properties);

 ...

 em.refresh(employee, LockModeType.PESSIMISTIC_WRITE, properties);

Setting timeout at the operation level overrides setting in higher scopes.

3.4.3 Lifecycle Events
Callback methods are user defined methods that are attached to entity lifecycle events and are
invoked automatically by JPA when these events occur.

Internal Callback Methods

Internal callback methods are methods that are defined within an entity class. For example, the
following entity class defines all the supported callback methods with empty implementations:

@Entity
public static class MyEntityWithCallbacks {
 @PrePersist void onPrePersist() {}
 @PostPersist void onPostPersist() {}
 @PostLoad void onPostLoad() {}
 @PreUpdate void onPreUpdate() {}
 @PostUpdate void onPostUpdate() {}
 @PreRemove void onPreRemove() {}
 @PostRemove void onPostRemove() {}
}

Internal callback methods should always return void and take no arguments. They can have any
name and any access level (public, protected, package and private) but should not be
static.

The annotation specifies when the callback method is invoked:

• @PrePersist - before a new entity is persisted (added to the EntityManager).

70

ObjectDB Developer's Guide Chapter 3 - Using JPA

• @PostPersist - after storing a new entity in the database (during commit or flush).

• @PostLoad - after an entity has been retrieved from the database.

• @PreUpdate - when an entity is identified as modified by the EntityManager.

• @PostUpdate - after updating an entity in the database (during commit or flush).

• @PreRemove - when an entity is marked for removal in the EntityManager.

• @PostRemove - after deleting an entity from the database (during commit or flush).

An entity class may include callback methods for any subset or combination of lifecycle events
but no more than one callback method for the same event. However, the same method may be
used for multiple callback events by marking it with more than one annotation.

By default, a callback method in a super entity class is also invoked for entity objects of the
subclasses unless that callback method is overridden by the subclass.

Implementation Restrictions

To avoid conflicts with the original database operation that fires the entity lifecycle event (which
is still in progress) callback methods should not call EntityManager or Query methods
and should not access any other entity objects.

If a callback method throws an exception within an active transaction, the transaction is marked
for rollback and no more callback methods are invoked for that operation.

Listeners and External Callback Methods

External callback methods are defined outside entity classes in a special listener class:

public class MyListener {
 @PrePersist void onPrePersist(Object o) {}
 @PostPersist void onPostPersist(Object o) {}
 @PostLoad void onPostLoad(Object o) {}
 @PreUpdate void onPreUpdate(Object o) {}
 @PostUpdate void onPostUpdate(Object o) {}
 @PreRemove void onPreRemove(Object o) {}
 @PostRemove void onPostRemove(Object o) {}
}

External callback methods (in a listener class) should always return void and take one argument
that specifies the entity which is the source of the lifecycle event. The argument can have any

71

ObjectDB Developer's Guide Chapter 3 - Using JPA

type that matches the actual value (e.g. in the code above, Object can be replaced by a more
specific type). The listener class should be stateless and should have a public no-arg constructor
(or no constructor at all) to enable automatic instantiation.

The listener class is attached to the entity class using the @EntityListeners annotation:

@Entity @EntityListeners(MyListener.class)
public class MyEntityWithListener {
}

Multiple listener classes can also be attached to one entity class:

@Entity @EntityListeners({MyListener1.class, MyListener2.class})
public class MyEntityWithTwoListeners {
}

Listeners that are attached to an entity class are inherited by its subclasses unless the subclass
excludes inheritance explicitly using the @ExcludeSuperclassListeners annotation:

@Entity @ExcludeSuperclassListeners
public class EntityWithNoListener extends EntityWithListener {
}

Default Entity Listeners

Default entity listeners are listeners that should be applied by default to all the entity classes.
Currently, default listeners can only be specified in a mapping XML file because there is no
equivalent annotation:

72

ObjectDB Developer's Guide Chapter 3 - Using JPA

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 <entity-listener class="samples.MyDefaultListener1" />
 <entity-listener class="samples.MyDefaultListener2" />
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
</entity-mappings>

The mapping file has to be located either in the default location, META-INF/orm.xml,
or in another location that is specified explicitly in the persistence unit definition (in
persistence.xml).

Default listeners are applied by default to all the entity classes. The
@ExcludeDefaultListeners annotation can be used to exclude an entity class and all its
descendant classes from using the default listeners:

@Entity @ExcludeDefaultListeners
public class NoDefaultListenersForThisEntity {
}

@Entity
public class NoDefaultListenersForThisEntityEither
 extends NoDefaultListenersForThisEntity {
}

Callback Invocation Order

If more than one callback method has to be invoked for a lifecycle event (e.g. from multiple
listeners) the invocation order is based on the following rules:

• All the external callback methods (which are defined in listeners) are invoked before the
internal callback methods (which are defined in entity classes).

• Default listeners are handled first, then listeners of the top level entity class, and then
down the hierarchy until listeners of the actual entity class. If there is more than one

73

ObjectDB Developer's Guide Chapter 3 - Using JPA

default listener or more than one listener at the same level in the hierarchy, the invocation
order follows the definition order.

• Internal callback methods are invoked starting at the top level entity class and then down
the hierarchy until the callback methods in the actual entity class are invoked.

3.4.4 Shared L2 Cache
Every EntityManager owns a persistence context , which is a collection of all the entity objects
that it manages. The persistence context serves as a first level cache. An attempt to retrieve an
entity object that is already managed by the EntityManager returns the existing instance from
the persistence context, rather than a new instantiated entity object.

The scope of the persistence context is one EntityManager. This section describes a level 2
 (L2) cache of entity objects, which is managed by the EntityManagerFactory and shared
by all its EntityManager objects. the broader scope of this cache makes it useful in applications
that use many short term EntityManager instances.

In addition to the EntityManager's L1 cache and the EntityManagerFactory's L2 cache,
which are managed on the client side - ObjectDB manages also several caches on the server side:

• Cache of database file pages.

• Cache of query programs.

• Cache of query execution results.

The scope of these server side caches is wider, since they exist per database and are shared by all
the EntityManagerFactory and EntityManager instances of the same database - including
on different client machines.

Setting the Shared Cache

The shared (L2) cache is configured in three scopes:

• Globally in the ObjectDB configuration.

• Per persistence unit in the persistence.xml file.

• Per entity class - using annotations.

ObjectDB Configuration

The shared cache size is specified in the ObjectDB configuration :

74

ObjectDB Developer's Guide Chapter 3 - Using JPA

 <cache ... level2="0mb" />

The level2 attribute determines the size of the EntityManagerFactory's shared cache. The
default size, 0, indicates that the cache is disabled. To enable the cache a positive value has to
be specified.

Persistence Unit Settings

The shared cache can also be enabled or disabled using a persistence unit property:

 <persistence-unit name="my-pu">
 ...
 <properties>
 <property name="javax.persistence.sharedCache.mode" value="ALL"/>
 </properties>
 ...
 </persistence-unit>

The javax.persistence.sharedCache.mode property can be set to one of the following
values:

• NONE - cache is disabled.

• ENABLE_SELECTIVE - cache is disabled except for selected entity classes (see below).

• DISABLE_SELECTIVE - cache is enabled except for selected entity classes (see below).

• ALL (the default) - cache is enabled for all the entity classes.

• UNSPECIFIED - handled differently by different JPA providers. In ObjectDB the
UNSPECIFIED value is equivalent to ALL, which is the default.

If the cache size is 0 - the shared cache is disabled regardless of the set mode.

Entity Class Cache Settings

The ENABLE_SELECTIVE mode indicates that the cache is disabled for all the entity classes except
classes that are specified as Cacheable explicitly. For example:

75

ObjectDB Developer's Guide Chapter 3 - Using JPA

@Cacheable // or @Cacheable(true)
@Entity
public class MyCacheableEntityClass {
 ...
}

Similarly, the DISABLE_SELECTIVE value indicates that the cache is enabled for all the entity
classes except classes that are specified as non Cacheable explicitly. For example:

@Cacheable(false)
@Entity
public class MyNonCacheableEntityClass extends MyCacheableEntityClass {
 ...
}

Cacheable is an inherited property - every entity class which is not marked with @Cacheable
inherits cacheability setting from its super class.

Using the Shared Cache

The shared cache (when enabled) provides the following functionality automatically:

• On retrieval - shared cache is used for entity objects that are not in the persistence
context. If an entity object is not available also in the shared cache - it is retrieved from the
database and added to the shared cache.

• On commit - new and modified entity objects are added to the shared cache.

JPA provides two properties that can be used in order to change the default behavior.

javax.persistence.cache.retrieveMode

The "javax.persistence.cache.retrieveMode" property specifies if the shared cache
is used on retrieval. Two values are available for this property as constants of the
CacheRetrieveMode enum:

• CacheRetrieveMode. USE - cache is used.

• CacheRetrieveMode. BYPASS - cache is not used.

The default setting is USE. It can be changed for a specific EntityManager:

76

ObjectDB Developer's Guide Chapter 3 - Using JPA

 em.setProperty(
 "javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS);

Setting can also be overridden for a specific retrieval operation:

 // Before executing a query:
 query.setHint("javax.persistence.cache.retrieveMode",
 CacheRetrieveMode.BYPASS);

 // For retrieval by type and primary key:
 em.find(MyEntity2.class, Long.valueOf(1),
 Collections.<String,Object>singletonMap(
 "javax.persistence.cache.retrieveMode", CacheRetrieveMode.BYPASS));

javax.persistence.cache.storeMode

The "javax.persistence.cache.storeMode" property specifies if new data should be added
to the cache on commit and on retrieval. The property has three valid values, which are defined
as constants of the CacheStoreMode enum:

• CacheStoreMode. BYPASS - cache is not updated with new data.

• CacheStoreMode. USE - new data in stored in the cache - but only for entity objects
that are not in the cache already.

• CacheStoreMode. REFRESH - new data is stored in the cache - refreshing entity objects
that are already cached.

The default setting is USE. It can be changed for a specific EntityManager:

 em.setProperty("javax.persistence.cache.storeMode", CacheStoreMode.BYPASS);

Setting can also be overridden for a specific retrieval operation. For example:

 em.find(MyEntity2.class, Long.valueOf(1),
 Collections.<String,Object>singletonMap(
 "javax.persistence.cache.storeMode", CacheRetrieveMode.BYPASS));

The difference between CacheStoreMode.USE and CacheStoreMode.REFRESH is when
bypassing the cache in retrieval operations. In this case, an entity object that is already cached
is updated using the fresh retrieved data only when CacheStoreMode.REFRESH is used. This

77

ObjectDB Developer's Guide Chapter 3 - Using JPA

might be useful when the database might be updated by other applications (or using other
EntityManagerFactory instances).

Using the Cache Interface

The shared cache is represented by the Cache interface. A Cache instance can be obtained by
using the EntityManagerFactory's getCache method:

 Cache cache = emf.getCache();

The Cache object enables checking if a specified entity object is cached:

 boolean isCached = cache.contains(MyEntity.class, Long.valueOf(id));

Cached entity objects can be removed from the cache by one of the evict methods:

 // Remove a specific entity object from the shared cache:
 cache.evict(MyEntity.class, Long.valueOf(id));

 // Remove all the instances of a specific class from the cache:
 cache.evict(MyEntity.class);

 // Clear the shared cache by removing all the cached entity objects:
 cache.evictAll();

The Cache interface and its methods are unnecessary in most applications.

3.4.5 Metamodel API
The JPA Metamodel API provides the ability to examine the persistent object model and retrieve
details on managed classes and persistent fields and properties, similarly to the ability that Java
reflection provides for general Java types.

The Metamodel Interface

The main interface of the JPA Metamodel API is Metamodel. It can be obtained either by
the EntityManagerFactory 's getMetamodel method or by the EntityManager 's
getMetamodel method (both methods are equivalent).

78

ObjectDB Developer's Guide Chapter 3 - Using JPA

For example, given an EntityManager , em, a Metamodel instance can be obtained by:

 Metamodel metamodel = em.getMetamodel();

The Metamodel interface provides several methods for exploring user defined persistable
types (which are referred to as managed types) in the persistent object model.

Three methods can be used to retrieve sets of types:

 // Get all the managed classes:
 // (entity classes, embeddable classes, mapped super classes)
 Set<ManagedType> allManagedTypes = metamodel.getManagedTypes();

 // Get all the entity classes:
 Set<EntityType> allEntityTypes = metamodel.getEntities();

 // Get all the embeddable classes:
 Set<EmbeddableType> allEmbeddableTypes = metamodel.getEmbeddables();

If managed classes are not listed in the persistence unit (which is optional when using ObjectDB)
then only known managed types are returned. This includes all the types whose instances are
already stored in the database.

Three additional methods can be used to retrieve a specific type by its Class instance:

 // Get a managed type (entity, embeddable or mapped super classes):
 ManagedType<MyClass> type1 = metamodel.managedType(MyClass.class);

 // Get an entity type:
 EntityType<MyEntity> type2 = metamodel.entity(MyEntity.class);

 // Get an embeddable type:
 EmbeddableType<MyEmbeddableType> type3 =
 metamodel.embeddable(MyEmbeddableType.class);

These three methods can also be used with types that are still unknown to ObjectDB (not listed
in the persistence unit and have not been used yet). In this case, calling the method introduces
the specified type to ObjectDB.

79

ObjectDB Developer's Guide Chapter 3 - Using JPA

Type Interface Hierarchy

Types are represented in the Metamodel API by descendant interfaces of the Type interface:

• BasicType - represents system defined types.

• ManagedType is an ancestor of interfaces that represent user defined types:

• EmbeddableType - represents user defined embeddable classes.

• IdentifiableType is as a super interface of:

• MappedSuperclassType - represents user defined mapped super classes.

• EntityType - represents user defined entity classes.

The Type interfaces provides a thin wrapper of Class with only two methods:

 // Get the underlying Java representation of the type:
 Class cls = type.getJavaType();

 // Get one of BASIC, EMBEDDABLE, ENTITY, MAPPED_SUPERCLASS:
 PersistenceType kind = type.getPersistenceType();

The ManagedType interface adds methods for exploring managed fields and properties (which
are referred to as attributes). For example:

 // Get all the attributes - including inherited:
 Set<Attribute> attributes1 = managedType.getAttributes();

 // Get all the attributes - excluding inherited:
 Set<Attribute> attributes2 = managedType.getDeclaredAttributes();

 // Get a specific attribute - including inherited:
 Attribute<MyClass,String> strAttr1 = managedType.getAttribute("name");

 // Get a specific attribute - excluding inherited:
 Attribute<MyClass,String> strAttr2 =
 managedType.getDeclaredAttribute("name");

Additional methods are defined in ManagedType to return attributes of Collection, List,
Set a Map types in a type safe manner.

The IdentifiableType adds methods for retrieving information on the primary key and the
version attributes and the super type. For example:

80

ObjectDB Developer's Guide Chapter 3 - Using JPA

 // Get the super type:
 IdentifiableType<MyEntity> superType = entityType.getSupertype();

 // Checks if the type has a single ID attribute:
 boolean hasSingleId = entityType.hasSingleIdAttribute();

 // Gets a single ID attribute - including inherited:
 SingularAttribute<MyEntity,Long> id1 = entityType.getId(Long.class);

 // Gets a single ID attribute - excluding inherited:
 SingularAttribute<MyEntity,Long> id2 =
 entityType.getDeclaredId(Long.class);

 // Checks if the type has a version attribute:
 boolean hasVersion = entityType.hasVersionAttribute();

 // Gets the version attribute - excluding inherited:
 SingularAttribute<MyEntity,Long> v1 = entityType.getVersion(Long.class);

 // Gets the version attribute - including inherited:
 SingularAttribute<MyEntity,Long> v2 =
 entityType.getDeclaredVersion(Long.class);

Additional methods are defined in IdentifiableType to support an ID class when using
multiple ID fields or properties.

Finally, the EntityType interface adds only one additional method for getting the entity name:

 String entityName = entityType.getName();

Attribute Interface Hierarchy

Managed fields and properties are represented by the Attribute interfaces and its descendant
interfaces:

• SingularAttribute - represents single value attributes.

81

ObjectDB Developer's Guide Chapter 3 - Using JPA

• PluralAttribute is an ancestor of interfaces that represent multi value attributes:

• CollectionAttribute - represents attributes of Collection types.

• SetAttribute - represents attributes of Set types.

• ListAttribute represents attributes of List types.

• MapAttribute - represents attributes of Map types.

The Attribute interface provides methods for retrieving field and property details. For
example:

 // Get the field (or property) name:
 String name = attr.getName();

 // Get Java representation of the field (or property) type:
 Class<Integer> attr.getJavaType();

 // Get Java reflection representation of the field (or property) type:
 Member member = attr.getJavaMember();

 // Get the type in which this field (or property) is defined:
 ManagedType<MyEntity> entityType = attr.getDeclaringType();

Few other methods are defined in Attribute and in MapAttribute to support additional
details.

82

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Chapter 4 - JPA Queries
The JPA Query Language (JPQL) can be considered as an object oriented version of SQL. Users
familiar with SQL should find JPQL very easy to learn and use. This chapter explains how to use
JPQL as well as how to use the JPA Criteria API, which provides an alternative way for building
queries in JPA, based on JPQL.

The first section describes the API that JPA provides for using dynamic and static (named) queries.
It explains how to use the relevant interfaces, annotations, enums and methods, but does not
provide specific details on the JPQL query language itself:

• JPA Query API

The Java Persistence Query Language (JPQL) is discussed in the next two sections. First, the
structure of a JPQL query (and a criteria query) is explained by describing the main clauses of JPQL
queries (SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY):

• JPA Query Structure (JPQL / Criteria)

Then the expressions that are used for building JPQL and criteria query clauses are explained:

• JPA Query Expressions (JPQL / Criteria)

ObjectDB also supports the Java Data Objects (JDO) Query Language (JDOQL), which is more Java
oriented and is based on the syntax of Java. JDOQL is not covered in this manual (see chapter 7
in ObjectDB 1.0 manual for a description JDOQL).

4.1 Query API
Queries are represented in JPA 2 by two interfaces - the old Query interface, which was the
only interface available for representing queries in JPA 1, and the new TypedQuery interface
that was introduced in JPA 2. The TypedQuery interface extends the Query interface.

In JPA 2 the Query interface should be used mainly when the query result type is unknown or
when a query returns polymorphic results and the lowest known common denominator of all the
result objects is Object. When a more specific result type is expected queries should usually use
the TypedQuery interface. It is easier to run queries and process the query results in a type
safe manner when using the TypedQuery interface.

83

http://www.objectdb.com/database/jdo/manual/chapter7
http://www.objectdb.com/database/jdo/manual

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Building Queries with createQuery

As with most other operations in JPA, using queries starts with an EntityManager (represented
by em in the following code snippets), which serves as a factory for both Query and TypedQuery
:

 Query q1 = em.createQuery("SELECT c FROM Country c");

 TypedQuery<Country> q2 =
 em.createQuery("SELECT c FROM Country c", Country.class);

In the above code, the same JPQL query which retrieves all the Country objects in the database
is represented by both q1 and q2. When building a TypedQuery instance the expected result
type has to be passed as an additional argument, as demonstrated for q2. Because, in this case,
the result type is known (the query returns only Country objects), a TypedQuery is preferred.

There is another advantage of using TypedQuery in ObjectDB. In the context of the queries above,
if there are no Country instances in the database yet and the Country class is unknown as a
managed entity class - only the TypedQuery variant is valid because it introduces the Country
class to ObjectDB.

Dynamic JPQL, Criteria API and Named Queries

Building queries by passing JPQL query strings directly to the createQuery method, as shown
above, is referred to in JPA as dynamic query construction because the query string can be built
dynamically at runtime.

The JPA Criteria API provides an alternative way for building dynamic queries, based on Java
objects that represent query elements (replacing string based JPQL).

JPA also provides a way for building static queries, as named queries , using the @NamedQuery
and @NamedQueries annotations. It is considered to be a good practice in JPA to prefer named
queries over dynamic queries when possible.

Organization of this Section

The following pages explain how to define and execute queries in JPA:

• Running JPA Queries

• Query Parameters in JPA

84

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• JPA Named Queries

• JPA Criteria API Queries

• Setting and Tuning of JPA Queries

In addition, the syntax of the JPA Query Language (JPQL) is described in:

• JPA Query Structure (JPQL / Criteria)

• JPA Query Expressions (JPQL / Criteria)

4.1.1 Running Queries
The Query interface defines two methods for running SELECT queries:

• Query.getSingleResult - for use when exactly one result object is expected.

• Query.getResultList - for general use in any other case.

Similarly, the TypedQuery interface defines the following methods:

• TypedQuery.getSingleResult - for use when exactly one result object is expected.

• TypedQuery.getResultList - for general use in any other case.

In addition, the Query interface defines a method for running DELETE and UPDATE queries:

• Query.executeUpdate - for running only DELETE and UPDATE queries.

Ordinary Query Execution (with getResultList)

The following query retrieves all the Country objects in the database. Because multiple result
objects are expected, the query should be run using the getResultList method:

 TypedQuery<Country> query =
 em.createQuery("SELECT c FROM Country c", Country.class);
 List<Country> results = query.getResultList();

Both Query and TypedQuery define a getResultList method, but the version of Query
returns a result list of a raw type (non generic) instead of a parameterized (generic) type:

 Query query = em.createQuery("SELECT c FROM Country c");
 List results = query.getResultList();

85

ObjectDB Developer's Guide Chapter 4 - JPA Queries

An attempt to cast the above results to a parameterized type (List<Country>) will cause a
compilation warning. If, however, the new TypedQuery interface is used casting is unnecessary
and the warning is avoided.

The query result collection functions as any other ordinary Java collection. A result collection of a
parameterized type can be iterated easily using an enhanced for loop:

 for (Country c : results) {
 System.out.println(c.getName());
 }

Note that for merely printing the country names, a query that uses projection and retrieves
country names directly instead of fully built Country instances would be more efficient.

Single Result Query Execution (with getSingleResult)

The getResultList method (which was discussed above) can also be used to run queries
that return a single result object. In this case, the result object has to be extracted from the result
collection after query execution (e.g. by results.get(0)). To eliminate this routine operation
JPA provides an additional method, getSingleResult , as a more convenient method when
exactly one result object is expected.

The following aggregate query always returns a single result object, which is a Long object
reflecting the number of Country objects in the database:

 TypedQuery<Long> query = em.createQuery(
 "SELECT COUNT(c) FROM Country c", Long.class);
 long countryCount = query.getSingleResult();

Notice that when a query returns a single object it might be tempting to prefer Query over
TypedQuery even when the result type is known because the casting of a single object is easy
and the code is simple:

 Query query = em.createQuery("SELECT COUNT(c) FROM Country c");
 long countryCount = (Long)query.getSingleResult();

An aggregate COUNT query always returns one result, by definition. In other cases our expectation
for a single object result might fail, depending on the database content. For example, the following
query is expected to return a single Country object:

86

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 Query query = em.createQuery(
 "SELECT c FROM Country c WHERE c.name = 'Canada'");
 Country c = (Country)query.getSingleResult();

However, the correctness of this assumption depends on the content of the database. If the
database contains multiple Country objects with the name 'Canada' (e.g. due to a bug) a
NonUniqueResultException is thrown. On the other hand, if there are no results at all a
NoResultException is thrown. Therefore, using getSingleResult requires some caution and
if there is any chance that these exceptions might be thrown they have to be caught and handled.

DELETE and UPDATE Query Execution (with executeUpdate)

DELETE and UPDATE queries are executed using the executeUpdate method.

For example, the following query deletes all the Country instances:

 int count = em.createQuery("DELETE FROM Country").executeUpdate();

and the following query resets the area field in all the Country instances to zero:

 int count = em.createQuery("UPDATE Country SET area = 0").executeUpdate();

A TransactionRequiredException is thrown if no transaction is active.

On success - the executeUpdate method returns the number of objects that have been updated
or deleted by the query.

The Query Structure section explains DELETE and UPDATE queries in more detail.

4.1.2 Query Parameters
Query parameters enable the definition of reusable queries. Such queries can be executed with
different parameter values to retrieve different results. Running the same query multiple times
with different parameter values (arguments) is more efficient than using a new query string for
every query execution, because it eliminates the need for repeated query compilations.

Named Parameters (:name)

The following method retrieves a Country object from the database by its name:

87

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 public Country getCountryByName(EntityManager em, String name) {
 TypedQuery<Country> query = em.createQuery(
 "SELECT c FROM Country c WHERE c.name = :name", Country.class);
 return query.setParameter("name", name).getSingleResult();
 }

The WHERE clause reduces the query results to Country objects whose name field value is
equal to :name, which is a parameter that serves as a placeholder for a real value. Before the
query can be executed a parameter value has to be set using the setParameter method.
The setParameter method supports method chaining (by returning the same TypedQuery
instance on which it was invoked), so invocation of getSingleResult can be chained to the
same expression.

Named parameters can be easily identified in a query string by their special form, which is a colon
(:) followed by a valid JPQL identifier that serves as the parameter name. JPA does not provide an
API for defining the parameters explicitly (except when using criteria API), so query parameters are
defined implicitly by appearing in the query string. The parameter type is inferred by the context.
In the above example, a comparison of :name to a field whose type is String indicates that the
type of :name itself is String.

Queries can include multiple parametershave one or more occurrences in the query string. A query
can be run only after setting values for all its parameters (in no matter in which order).

Ordinal Parameters (?index)

In addition to named parameter, whose form is ?index. The following method is equivalent to the
method above, except that an ordinal parameter replaces the named parameter:

 public Country getCountryByName(EntityManager em, String name) {
 TypedQuery<Country> query = em.createQuery(
 "SELECT c FROM Country c WHERE c.name = ?1", Country.class);
 return query.setParameter(1, name).getSingleResult();
 }

The form of ordinal parameters is a question mark (?) followed by a positive int number. Besides
the notation difference, named parameters and ordinal parameters are identical.

Named parameters can provide added value to the clarity of the query string (assuming that
meaningful names are selected). Therefore, they are preferred over ordinal parameters.

88

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Criteria Query Parameters

In a JPA query that is built by using the JPA Criteria API - parameters (as other query elements) are
represented by objects (of type ParameterExpression or its super interface Parameter
) rather than by names or numbers.

See the Parameters in Criteria Queries section for more details.

Parameters vs. Literals

Following is a third version of the same method. This time without parameters:

 public Country getCountryByName(EntityManager em, String name) {
 TypedQuery<Country> query = em.createQuery(
 "SELECT c FROM Country c WHERE c.name = '" + name + "'",
 Country.class);
 return query.getSingleResult();
 }

Instead of using a parameter for the queried name the new method embeds the name as a String
literal. There are a few drawbacks to using literals rather than parameters in queries.

First and each query string requires its own query compilation, which is very inefficient. On the
other hand, when using parameters, even if a new TypedQuery instance is constructed on
every query execution, ObjectDB can identify repeating queries with the same query string and
use a cached compiled query program , if available.

Second, embedding strings in queries is unsafe and can expose the application to JPQL injection
attacks. Suppose that the name parameter is received as an input from the user and then
embedded in the query string as is. Instead of a simple country name, a malicious user may provide
JPQL expressions that change the query and may help in hacking the system.

In addition, parameters are more flexible and support elements that are unavailable as literals,
such as entity objects.

API Parameter Methods

Over half of the methods in Query and TypedQuery deal with parameter handling. The
Query interface defines 18 such methods, 9 of which are overridden in TypedQuery. That large
number of methods is not typical to JPA, which generally excels in its thin and simple API.

89

ObjectDB Developer's Guide Chapter 4 - JPA Queries

There are 9 methods for setting parameters in a query, which is essential whenever using query
parameters. In addition, there are 9 methods for extracting parameter values from a query. These
get methods, which are new in JPA 2, are expected to be much less commonly used than the set
methods.

Two set methods are demonstrated above - one for setting a named parameter and the other for
setting an ordinal parameter. A third method is designated for setting a parameter in a Criteria
API query. The reason for having nine set methods rather than just three is that JPA additionally
provides three separate methods for setting Date parameters as well as three separate methods
for setting Calendar parameters.

Date and Calendar parameter values require special methods in order to specify what they
represent, such as a pure date, a pure time or a combination of date and time, as explained in
detail in the Date and Time (Temporal) Types section.

For example, the following invocation passes a Date object as a pure date (no time):

query.setParameter("date", new java.util.Date(), TemporalType.DATE);

Since TemporalType. Date represents a pure date, the time part of the newly constructed
java.util.Date instance is discarded. This is very useful in comparison against a specific date,
when time should be ignored.

The getexpected to be less commonly used.

4.1.3 Named Queries
A named query is a statically defined query with a predefined unchangeable query string. Using
named queries instead of dynamic queries may improve code organization by separating the
JPQL query strings from the Java code. It also enforces the use of query parameters rather than
embedding literals dynamically into the query string and results in more efficient queries.

@NamedQuery and @NamedQueries Annotations

The following @NamedQuery annotation defines a query whose name is "Country.findAll"
that retrieves all the Country objects in the database:

@NamedQuery(name="Country.findAll", query="SELECT c FROM Country c")

90

ObjectDB Developer's Guide Chapter 4 - JPA Queries

The @NamedQuery annotation contains four elements - two of which are required and two are
optional. The two required elements, name and query define the name of the query and
the query string itself and are demonstrated above. The two optional elements, lockMode and
hints , provide static replacement for the setLockMode and setHint methods.

Every @NamedQuery annotation is attached to exactly one entity class or mapped superclass
- usually to the most relevant entity class. But since the scope of named queries is the entire
persistence unit, names should be selected carefully to avoid collision (e.g. by using the unique
entity name as a prefix).

It makes sense to add the above @NamedQuery to the Country entity class:

@Entity
@NamedQuery(name="Country.findAll", query="SELECT c FROM Country c")
public class Country {
 ...
}

Attaching multiple named queries to the same entity class requires wrapping them in a
@NamedQueries annotation, as follows:

@Entity
@NamedQueries({
 @NamedQuery(name="Country.findAll",
 query="SELECT c FROM Country c"),
 @NamedQuery(name="Country.findByName",
 query="SELECT c FROM Country c WHERE c.name = :name"),
})
public class Country {
 ...
}

Note: Named queries can be defined in JPA XML mapping files instead of using the
@NamedQuery annotation. ObjectDB supports JPA XML mapping files, including the definition
of named queries. But, because mapping files are useful mainly for Object Relational Mapping
(ORM) JPA providers and less so when using ObjectDB, this alternative is not covered in this
manual.

Using Named Queries at Runtime

Named queries are represented at runtime by the same Query and TypedQuery
interfaces but different EntityManager factory methods are used to instantiate them.

91

ObjectDB Developer's Guide Chapter 4 - JPA Queries

The createNamedQuery method receives a query name and a result type and returns a
TypedQuery instance:

 TypedQuery<Country> query =
 em.createNamedQuery("Country.findAll", Country.class);
 List<Country> results = query.getResultList();

Another form of createNamedQuery receives a query name and returns a Query instance:

 Query query = em.createNamedQuery("SELECT c FROM Country c");
 List results = query.getResultList();

One of the reasons that JPA requires the listing of managed classes in a persistence unit definition
is to support named queries. Notice that named queries may be attached to any entity class or
mapped superclass. Therefore, to be able to always locate any named query at runtime a list of
all these managed persistable classes must be available.

ObjectDB makes the definition of a persistence unit optional. Named queries are automatically
searched for in all the managed classes that ObjectDB is aware of, and that includes all the entity
classes that have objects in the database. However, an attempt to use a named query still might
fail if that named query is defined on a class that is still unknown to ObjectDB.

As a workaround, you may introduce classes to ObjectDB before accessing named queries, by
using the JPA 2 Metamodel interface. For example:

 em.getMetamodel().managedType(MyEntity.class);

Following the above code ObjectDB will include MyEntity in searching named queries.

4.1.4 Criteria Query API
The JPA Criteria API provides an alternative way for defining JPA queries, which is mainly useful for
building dynamic queries whose exact structure is only known at runtime.

JPA Criteria API vs JPQL

JPQL queries are defined as strings, similarly to SQL. JPA criteria queries, on the other hand, are
defined by instantiation of Java objects that represent query elements.

92

ObjectDB Developer's Guide Chapter 4 - JPA Queries

A major advantage of using the criteria API is that errors can be detected earlier, during compilation
rather than at runtime. On the other hand, for many developers string based JPQL queries, which
are very similar to SQL queries, are easier to use and understand.

For simple static queries - string based JPQL queries (e.g. as named queries) may be preferred.
For dynamic queries that are built at runtime - the criteria API may be preferred.

For example, building a dynamic query based on fields that a user fills at runtime in a form that
contains many optional fields - is expected to be cleaner when using the JPA criteria API, because
it eliminates the need for building the query using many string concatenation operations.

String based JPQL queries and JPA criteria based queries are equivalent in power and in efficiency.
Therefore, choosing one method over the other is also a matter of personal preference.

First JPA Criteria Query

The following query string represents a minimal JPQL query:

SELECT c FROM Country c

An equivalent query can be built using the JPA criteria API as follows:

 CriteriaBuilder cb = em.getCriteriaBuilder();

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 q.select(c);

The CriteriaBuilder interface serves as the main factory of criteria queries and criteria query
elements. It can be obtained either by the EntityManagerFactory 's getCriteriaBuilder
method or by the EntityManager 's getCriteriaBuilder method (both methods are
equivalent).

In the example above a CriteriaQuery instance is created for representing the built query.
Then a Root instance is created to define a range variable in the FROM clause. Finally, the
range variable, c, is also used in the SELECT clause as the query result expression.

A CriteriaQuery instance is equivalent to a JPQL string and not to a TypedQuery instance.
Therefore, running the query still requires a TypedQuery instance:

93

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 TypedQuery<Country> query = em.createQuery(q);
 List<Country> results = query.getResultList();

Using the criteria API introduces some extra work, at least for simple static queries, since the
equivalent JPQL query could simply be executed as follows:

 TypedQuery<Country> query =
 em.createQuery("SELECT c FROM Country c", Country.class);
 List<Country> results = query.getResultList();

Because eventually both types of queries are represented by a TypedQuery instance - query
execution and query setting is similar, regardless of the way in which the query is built.

Parameters in Criteria Queries

The following query string represents a JPQL query with a parameter:

SELECT c FROM Country c WHERE c.population > :p

An equivalent query can be built using the JPA criteria API as follows:

 CriteriaBuilder cb = em.getCriteriaBuilder();

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 ParameterExpression<Integer> p = cb.parameter(Integer.class);
 q.select(c).where(cb.gt(c.get("population"), p));

The ParameterExpression instance, p, is created to represent the query parameter. The
where method sets the WHERE clause. As shown above, The CriteriaQuery interface
supports method chaining. See the links in the next sections of this page for detailed explanations
on how to set criteria query clauses and build criteria expressions.

Running this query requires setting the parameter:

 TypedQuery<Country> query = em.createQuery(q);
 query.setParameter(p, 10000000);
 List<Country> results = query.getResultList();

94

ObjectDB Developer's Guide Chapter 4 - JPA Queries

The setParameter method takes a Parameter (or a ParameterExpression) instance
as the first argument instead of a name or a position (which are used with string based JPQL
parameters).

Criteria Query Structure

Queries in JPA (as in SQL) are composed of clauses. Because JPQL queries and criteria queries use
equivalent clauses - they are explained side by side in the Query Structure pages.

Specific details about criteria query clauses are provided in the following page sections:

• SELECT clause (select , distinct , multiselect , array , tuple ,
construct).

• FROM clause (from , join , fetch).

• WHERE clause (where).

• GROUP BY / HAVING clauses (groupBy , having , count , sum , avg , min ,
max , ...).

• ORDER BY clause (orderBy , Order , asc , desc).

The links above are direct links to the criteria query sections in pages that describe query structure
in general, including in the context of string based JPQL queries.

Criteria Query Expressions

JPA query clauses are composed of expressions. Because JPQL queries and criteria queries use
equivalent expressions - they are explained side by side in the Query Expressions pages.

Specific details about criteria query expressions are provided in the following page sections:

• Literals and Dates (literal , nullLiteral , currentDate , ...).

• Paths, navigation and types (get , type).

• Arithmetic expressions (sum , diff , prod , quot , mod , abs , neg , sqrt
).

• String expressions (like , length , locate , lower , upper , concat ,
substring, ...).

• Collection expressions (isEmpty , isNotEmpty , isMember , isNotMember ,
size).

• Comparison expressions (equal , notEqual , gt , ge , lt , le , between ,
isNull , ...)

95

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• Logical expressions (and , or , not , isTrue).

The links above are direct links to the criteria query sections in pages that describe expressions
in general, including in the context of string based JPQL queries.

4.1.5 Setting & Tuning
The Query and TypedQuery interfaces define various setting and tuning methods
that may affect query execution if invoked before a query is run using getResultList or
getSingleResult.

Result Range (setFirstResult, setMaxResults)

The setFirstResult and setMaxResults methods enable defining a result window
that exposes a portion of a large query result list (hiding anything outside that window).
The setFirstResult method is used to specify where the result window begins, i.e. how
many results at the beginning of the complete result list should be skipped and ignored. The
setMaxResults method is used to specify the result window size. Any result after hitting that
specified maximum is ignored.

These methods support the implementation of efficient result paging. For example, if each result
page should show exactly pageSize results, and pageId represents the result page number (0
for the first page), the following expression retrieves the results for a specified page:

 List<Country> results =
 query.setFirstResult(pageIx * pageSize)
 .setMaxResults(pageSize)
 .getResultList();

These methods can be invoked in a single expression with getResultList since the setter
methods in Query and TypedQuery support method chaining (by returning the query object
on which they were invoked).

Flush Mode (setFlushMode)

Changes made to a database using an EntityManager em can be visible to anyone who uses em,
even before committing the transaction (but not to users of other EntityManager instances). JPA
implementations can easily make uncommitted changes visible in simple JPA operations, such as
find . However, query execution is much more complex. Therefore, before a query is executed,

96

ObjectDB Developer's Guide Chapter 4 - JPA Queries

uncommitted database changes (if any) have to be flushed to the database in order to be visible
to the query.

Flush policy in JPA is represented by the FlushModeType enum, which has two values:

• AUTO - changes are flushed before query execution and on commit/flush.

• COMMIT - changes are flushed only on explicit commit/flush.

In most JPA implementations the default is AUTO. In ObjectDB the default is COMMIT (which is more
efficient). The default mode can be changed by the application, either at the EntityManager
level as a default for all the queries in that EntityManager or at the level of a specific query,
by overriding the default EntityManager setting:

 // Enable query time flush at the EntityManager level:
 em.setFlushMode(FlushModeType.AUTO);

 // Enable query time flush at the level of a specific query:
 query.setFlushMode(FlushModeType.AUTO);

Flushing changes to the database before every query execution affects performance significantly.
Therefore, when performance is important, this issue has to be considered.

Lock Mode (setLockMode)

ObjectDB uses automatic optimistic locking to prevent concurrent changes to entity objects by
multiple users. JPA 2 adds support for pessimistic locking. The setLockMode method sets a
lock mode that has to be applied on all the result objects that the query retrieves. For example,
the following query execution sets a pessimistic WRITE lock on all the result objects:

 List<Country> results =
 query.setLockMode(LockModeType.PESSIMISTIC_WRITE)
 .getResultList();

Notice that when a query is executed with a requested pessimistic lock mode it could fail if locking
fails, throwing a LockTimeoutException .

Query Hints

Additional settings can be applied to queries via hints.

97

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Supported Query Hints

ObjectDB supports the following query hints:

• "javax.persistence.query.timeout" - sets maximum query execution time in
milliseconds. A QueryTimeoutException is thrown if timeout is exceeded.

• "javax.persistence.lock.timeout" - sets maximum waiting time for pessimistic
locks, when pessimistic locking of query results is enabled. See the Lock Timeout section
for more details about lock timeout.

• "objectdb.query-language" - sets the query language, as one of "JPQL" (JPA query
language), "JDOQL" (JDO query language) or "ODBQL" (ObjectDB query language).
The default is ODBQL, which is a union of JPQL, JDOQL and ObjectDB extensions. Setting
"JPQL" is useful to enforce portable JPA code by ObjectDB.

• "objectdb.result-fetch" - sets fetch mode for query result as either "EAGER" (the
default) or "LAZY". When LAZY is used result entity objects are returned as references
(with no content). This could be useful when the shared L2 cache is enabled and entity
objects may already be available in the cache.

Setting Query Hint (Scopes)

Query hints can be set in the following scopes (from global to local):

For the entire persistence unit - using a persistence.xml property:

 <properties>
 <property name="javax.persistence.query.timeout" value="3000"/>
 </properties>

For an EntityManagerFactory - using the createEntityManagerFacotory method:

 Map<String,Object> properties = new HashMap();
 properties.put("javax.persistence.query.timeout", 4000);
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("pu", properties);

For an EntityManager - using the createEntityManager method:

 Map<String,Object> properties = new HashMap();
 properties.put("javax.persistence.query.timeout", 5000);
 EntityManager em = emf.createEntityManager(properties);

98

ObjectDB Developer's Guide Chapter 4 - JPA Queries

or using the setProperty method:

 em.setProperty("javax.persistence.query.timeout", 6000);

For a named query definition - using the hints element:

@NamedQuery(name="Country.findAll", query="SELECT c FROM Country c",
 hints={@QueryHint(name="javax.persistence.query.timeout", value="7000")})

For a specific query execution - using the setHint method (before query execution):

 query.setHint("javax.persistence.query.timeout", 8000);

A hint that is set in a global scope affects all the queries in that scope (unless it is overridden in
a more local scope). For example, setting a query hint in an EntityManager affects all the queries
that are created in that EntityManager (except queries with explicit setting of the same hint).

4.2 Query Structure
The syntax of the Java Persistence Query Language (JPQL) is very similar to the syntax of SQL.
Having a SQL like syntax in JPA queries is an important advantage because SQL is a very powerful
query language and many developers are already familiar with it.

The main difference between SQL and JPQL is that SQL works with relational database tables,
records and fields, whereas JPQL works with Java classes and objects. For example, a JPQL query
can retrieve and return entity objects rather than just field values from database tables, as with
SQL. That makes JPQL more object oriented friendly and easier to use in Java.

JPQL Query Structure

As with SQL, a JPQL SELECT query also consists of up to 6 clauses in the following format:

SELECT ... FROM ...
[WHERE ...]
[GROUP BY ... [HAVING ...]]
[ORDER BY ...]

The first two clauses, SELECT and FROM are required in every retrieval query (update and delete
queries have a slightly different form). The other JPQL clauses, WHERE , GROUP BY , HAVING
and ORDER BY are optional.

99

ObjectDB Developer's Guide Chapter 4 - JPA Queries

The structure of JPQL DELETE and UPDATE queries is simpler:

DELETE FROM ... [WHERE ...]

UPDATE ... SET ... [WHERE ...]

Besides a few exceptions, JPQL is case insensitive. JPQL keywords, for example, can appear in
queries either in upper case (e.g. SELECT) or in lower case (e.g. select). The few exceptions in
which JPQL is case sensitive include mainly Java source elements such as names of entity classes
and persistent fields, which are case sensitive. In addition, string literals are also case sensitive
(e.g. "ORM" and "orm" are different values).

A Minimal JPQL Query

The following query retrieves all the Country objects in the database:

SELECT c FROM Country AS c

Because SELECT and FROM are mandatory, this demonstrates a minimal JPQL query.

The FROM clause declares one or more query variables (also known as identification variables).
Query variables are similar to loop variables in programing languages. Each query variable
represents iteration over objects in the database. A query variable that is bound to an entity class
is referred to as a range variable. Range variables define iteration over all the database objects
of a binding entity class and its descendant classes. In the query above, c is a range variable
that is bound to the Country entity class and defines iteration over all the Country objects in
the database.

The SELECT clause defines the query results. The query above simply returns all the Country
objects from the iteration of the c range variable, which in this case is actually all the Country
objects in the database.

Organization of this Section

This section contains the following pages:

• SELECT clause (JPQL / Criteria API)

• FROM clause (JPQL / Criteria API)

• WHERE clause (JPQL / Criteria API)

• GROUP BY and HAVING clauses

100

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• ORDER BY clause (JPQL / Criteria API)

• DELETE Queries in JPA/JPQL

• UPDATE SET Queries in JPA/JPQL

Detailed explanations on how to set criteria query clauses are provided as follows:

• Criteria SELECT (select , distinct , multiselect , array , tuple ,
construct).

• Criteria FROM (from , join , fetch).

• Criteria WHERE (where).

• Criteria GROUP BY / HAVING (groupBy , having , count , sum , avg , min ,
max , ...).

• Criteria ORDER BY (orderBy , Order , asc , desc).

4.2.1 JPQL SELECT
The ability to retrieve managed entity objects is a major advantage of JPQL. For example, the
following query returns Country objects that become managed by the EntityManager em:

 TypedQuery<Country> query =
 em.createQuery("SELECT c FROM Country c", Country.class);
 List<Country> results = query.getResultList();

Because the results are managed entity objects they have all the support that JPA provides for
managed entity objects, including transparent navigation to other database objects, transparent
update detection , support for delete , etc.

Query results are not limited to entity objects. JPA 2 adds the ability to use almost any valid JPQL
expression in SELECT clauses. Specifying the required query results more precisely can improve
performance and in some cases can also reduce the amount of Java code needed. Notice that
query results must always be specified explicitly - JPQL does not support the "SELECT *" expression
(which is commonly used in SQL).

Projection of Path Expressions

JPQL queries can also return results which are not entity objects. For example, the following query
returns country names as String instances, rather than Country objects:

101

ObjectDB Developer's Guide Chapter 4 - JPA Queries

SELECT c.name FROM Country AS c

Using path expressions , such as c.name, in query results is referred to as projection. The field
values are extracted from (or projected out of) entity objects to form the query results.

The results of the above query are received as a list of String values:

 TypedQuery<String> query = em.createQuery(
 "SELECT c.name FROM Country AS c", String.class);
 List<String> results = query.getResultList();

Only singular value path expressions can be used in the SELECT clause. Collection and map fields
cannot be included in the results directly, but their content can be added to the SELECT clause by
using a bound JOIN variable in the FROM clause.

Nested path expressions are also supported. For example, the following query retrieves the name
of the capital city of a specified country:

SELECT c.capital.name FROM Country AS c WHERE c.name = :name

Because construction of managed entity objects has some overhead, queries that return non entity
objects, as the two queries above, are usually more efficient. Such queries are useful mainly for
displaying information efficiently. They are less productive with operations that update or delete
entity objects, in which managed entity objects are needed.

Managed entity objects can, however, be returned from a query that uses projection when a result
path expression resolves to an entity. For example, the following query returns a managed City
entity object:

SELECT c.capital FROM Country AS c WHERE c.name = :name

Result expressions that represent anything but entity objects (e.g. values of system types and
user defined embeddable objects) return as results value copies that are not associated with
the containing entities. Therefore, embedded objects that are retrieved directly by a result path
expression are not associated with an EntityManager and changes to them when a transaction
is active are not propagated to the database.

102

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Multiple SELECT Expressions

The SELECT clause may also define composite results:

SELECT c.name, c.capital.name FROM Country AS c

The result list of this query contains Object[] elements, one per result. The length of each result
Object[] element is 2. The first array cell contains the country name (c.name) and the second
array cell contains the capital city name (c.capital.name).

The following code demonstrates running this query and processing the results:

 TypedQuery<Object[]> query = em.createQuery(
 "SELECT c.name, c.capital.name FROM Country AS c", Object[].class);
 List<Object[]> results = query.getResultList();
 for (Object[] result : results) {
 System.out.println(
 "Country: " + result[0] + ", Capital: " + result[1]);
 }

As an alternative to representing compound results by Object arrays, JPA supports using custom
result classes and result constructor expressions.

Result Classes (Constructor Expressions)

JPA supports wrapping JPQL query results with instances of custom result classes. This is mainly
useful for queries with multiple SELECT expressions, where custom result objects can provide an
object oriented alternative to representing results as Object[] elements.

The fully qualified name of the result class is specified in a NEW expression, as follows:

SELECT NEW example.CountryAndCapital(c.name, c.capital.name)
FROM Country AS c

This query is identical to the previous query above except that now the result list contains
CountryAndCapital instances rather than Object[] elements.

The result class must have a compatible constructor that matches the SELECT result expressions,
as follows:

103

ObjectDB Developer's Guide Chapter 4 - JPA Queries

package example;

public class CountryAndCapital {
 public String countryName;
 public String capitalName;

 public CountryAndCapital(String countryName, String capitalName) {
 this.countryName = countryName;
 this.capitalName = capitalName;
 }
}

The following code demonstrates running this query:

 String queryStr =
 "SELECT NEW example.CountryAndCapital(c.name, c.capital.name) " +
 "FROM Country AS c";
 TypedQuery<CountryAndCapital> query =
 em.createQuery(queryStr, CountryAndCapital.class);
 List<CountryAndCapital> results = query.getResultList();

Any class with a compatible constructor can be used as a result class. It could be a JPA managed
class (e.g. an entity class) but it could also be a lightweight 'transfer' class that is only used for
collecting and processing query results.

If an entity class is used as a result class, the result entity objects are created in the NEW state ,
which means that they are not managed. Such entity objects are missing the JPA functionality of
managed entity objects (e.g. transparent navigation and transparent update detection), but they
are more lightweight, they are built faster and they consume less memory.

SELECT DISTINCT

Queries that use projection may return duplicate results. For example, the following query may
return the same currency more than once:

SELECT c.currency FROM Country AS c WHERE c.name LIKE 'I%'

Both Italy and Ireland (whose name starts with 'I') use Euro as their currency. Therefore, the query
result list contains "Euro" more than once.

104

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Duplicate results can be eliminated easily in JPQL by using the DISTINCT keyword:

SELECT DISTINCT c.currency FROM Country AS c WHERE c.name LIKE 'I%'

The only difference between SELECT and SELECT DISTINCT is that the later filters duplicate results.
Filtering duplicate results might have some effect on performance, depending on the size of the
query result list and other factors.

SELECT in Criteria Queries

The criteria query API provides several ways for setting the SELECT clause.

Single Selection

Setting a single expression SELECT clause is straightforward.

For example, the following JPQL query:

SELECT DISTINCT c.currency FROM Country c

can be built as a criteria query as follows:

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 q.select(c.get("currency")).distinct(true);

The select method takes one argument of type Selection and sets it as the SELECT clause
content (overriding previously set SELECT content if any). Every valid criteria API expression can
be used as selection, because all the criteria API expressions are represented by a sub interface
of Selection - Expression (and its descendant interfaces).

The distinct method can be used to eliminate duplicate results as demonstrated in the above
code (using method chaining).

Multi Selection

The Selection interface is also a super interface of CompoundSelection , which represents
multi selection (which is not a valid expression by its own and can be used only in the SELECT
clause).

105

ObjectDB Developer's Guide Chapter 4 - JPA Queries

The CriteriaBuilder interface provides three factory methods for
building CompoundSelection instances - array , tuple and construct.

CriteriaBuilder's array

The following JPQL query:

SELECT c.name, c.capital.name FROM Country c

can be defined using the criteria API as follows:

 CriteriaQuery<Object[]> q = cb.createQuery(Object[].class);
 Root<Country> c = q.from(Country.class);
 q.select(cb.array(c.get("name"), c.get("capital").get("name")));

The array method builds a CompoundSelection instance, which represents results as
arrays.

The following code demonstrates execution of the query and iteration over the results:

 List<Object[]> results = em.createQuery(q).getResultList();
 for (Object[] result : results) {
 System.out.println(
 "Country: " + result[0] + ", Capital: " + result[1]);
 }

CriteriaBuilder's tuple

The Tuple interface can be used as a clean alternative to Object[]:

 CriteriaQuery<Tuple> q = cb.createTupleQuery();
 Root<Country> c = q.from(Country.class);
 q.select(cb.tuple(c.get("name"), c.get("capital").get("name")));

The tuple method builds a CompoundSelection instance, which represents Tuple
results.

The following code demonstrates execution of the query and iteration over the results:

106

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 List<Tuple> results = em.createQuery(q).getResultList();
 for (Tuple t : results) {
 System.out.println("Country: " + t.get(0) + ", Capital: " + t.get(1));
 }

The Tuple interface defines several other methods for accessing the result data.

CriteriaBuilder's construct

JPQL user defined result objects are also supported by the JPA criteria query API:

 CriteriaQuery<CountryAndCapital> q =
 cb.createQuery(CountryAndCapital.class);
 Root<Country> c = q.from(Country.class);
 q.select(cb.construct(CountryAndCapital.class,
 c.get("name"), c.get("capital").get("name")));

The construct method builds a CompoundSelection instance, which represents results
as instances of a user defined class (CountryAndCapital in the above example).

The following code demonstrates execution of the query:

 List<CountryAndCapital> results = em.createQuery(q).getResultList();

As expected - the result objects are CountryAndCapital instances.

CriteriaQuery's multiselect

In the above examples, CompoundSelection instances were first built by a CriteriaBuilder
factory method and then passed to the CriteriaQuery's select method.

The CriteriaQuery interface provides a shortcut method - multiselect ,
which takes a variable number of arguments representing multiple selections, and builds
a CompoundSelection instance based on the expected query results.

For example, the following invocation of multiselect :

 q.multiselect(c.get("name"), c.get("capital").get("name"));

107

ObjectDB Developer's Guide Chapter 4 - JPA Queries

is equivalent to using select with one of the factory methods (array , tuple or
construct) as demonstrated above.

The behavior of the multiselect method depends on the query result type (as set when
CriteriaQuery is instantiated):

• For expected Object and Object[] result type - array is used.

• For expected Tuple result - tuple is used.

• For any other expected result type - construct is used.

4.2.2 JPQL FROM
The FROM clause declares query identification variables that represent iteration over objects in
the database. A query identification variable is similar to a variable of a Java enhanced for loop in
a program, since both are used for iteration over objects.

Range Variables

Range variables are query identification variables that iterate over all the database objects
of a specific entity class hierarchy (i.e. an entity class and all its descendant entity classes).
Identification variables are always polymorphic. JPQL does not provide a way to exclude
descendant classes from iteration at the FROM clause level. JPA 2, however, adds support for
filtering instances of specific types at the WHERE clause level by using a type expression.

For example, in the following query, c iterates over all the Country objects in the database:

SELECT c FROM Country AS c

The AS keyword is optional, and the same query can also be written as follows:

SELECT c FROM Country c

By default, the name of an entity class in a JPQL query is the unqualified name of the class (e.g.
just Country with no package name). The default name can be overridden by specifying another
name explicitly in the @Entity's name annotation element.

Multiple range variables are allowed. For example, the following query returns all the pairs of
countries that share a common border:

108

ObjectDB Developer's Guide Chapter 4 - JPA Queries

SELECT c1, c2 FROM Country c1, Country c2
WHERE c2 MEMBER OF c1.neighbors

Multiple variables are equivalent to nested loops in a program. The FROM clause above defines
two loops. The outer loop uses c1 to iterate over all the Country objects. The inner loop uses c2
to also iterate over all the Country objects. A similar query with no WHERE clause would return
all the possible combinations of two countries. The WHERE clause filters any pair of countries that
do not share a border, returning as results only neighbor countries.

Caution is required when using multiple range variables. Iteration over about 1,000,000 database
objects with a single range variable might be acceptable. But iteration over the same objects with
two range variables forming nested loops (outer and inner) might prevent query execution within
a reasonable response time.

Database Management Systems (DBMS), including ObjectDB, try to optimize execution of multi-
variable queries. Whenever possible, full nested iteration over the entire Cartesian product is
avoided. The above query, for example, can be executed as follows. An outer loop iterates with
c1 over all the Country objects in the database. An inner loop iterates with c2 only over the
neighbors collection of the outer c1. In this case, by propagation of a WHERE constraint to the
FROM phase, a full iteration over the Cartesian product is avoided.

[INNER] JOIN

As discussed above, range variables represent iteration over all the database objects of a specified
entity type. JPQL provides an additional type of identification variable, a join variable, which
represent a more limited iteration over specified collections of objects.

The following query uses one range variable and one join variable:

SELECT c1, c2 FROM Country c1 INNER JOIN c1.neighbors c2

In JPQL, JOIN can only appear in a FROM clause. The INNER keyword is optional (i.e. INNER JOIN is
equivalent to JOIN). c1 is declared as a range variable that iterates over all the Country objects
in the database. c2 is declared as a join variable that is bound to the c1.neighbors path and
iterates only over objects in that collection.

You might have noticed that this query is equivalent to the previous neighbors query, which has
two range variables and a WHERE clause. However, this second query form that uses a join variable
is preferred. Besides being shorter and cleaner, the second query describes the right and efficient

109

ObjectDB Developer's Guide Chapter 4 - JPA Queries

way for executing the query (which is using a full range outer loop and a collection limited inner
loop) without relying on DBMS optimizations.

It is quite common for JPQL queries to have a single range variable that serves as a root and
additional join variables that are bound to path expressions. Join variables can also be bound to
path expressions that are based on other join variables that appear earlier in the FROM clause.

Join variables can also be bound to a single value path expression. For example:

SELECT c, p.name FROM Country c JOIN c.capital p

In this case, the inner loop iterates over a single object because every Country c has only one
Capital p. Join variables that are bound to a single value expression are less commonly used
because usually they can be replaced by a simpler long path expression (which is not an option
for a collection). For example:

SELECT c, c.capital.name FROM Country c

One exception is when OUTER JOIN is required because path expressions function as implicit INNER
JOIN variables.

LEFT [OUTER] JOIN

To understand the purpose of OUTER JOIN, consider the following INNER JOIN query that retrieves
pairs of (country name, capital name):

SELECT c.name, p.name FROM Country c JOIN c.capital p

The FROM clause defines iteration over (country, capital) pairs. A country with no capital city (e.g.
Nauru, which does not have an official capital) is not part of any iterated pair and is therefore
excluded from the query results. INNER JOIN simply skips any outer variable value (e.g. any
Country) that has no matching inner variable (e.g. a Capital).

The behavior of OUTER JOIN is different, as demonstrated by the following query variant:

SELECT c, p.name FROM Country c LEFT OUTER JOIN c.capital p

The OUTER keyword is optional (LEFT OUTER JOIN is equivalent to LEFT JOIN). When using OUTER
JOIN, if a specific outer variable does not have any matching inner value it gets at least a NULL

110

ObjectDB Developer's Guide Chapter 4 - JPA Queries

value as a matching value in the FROM iteration. Therefore, a Country c with no Capital city
has a minimum representation of (c, NULL) in the FROM iteration.

For example, unlike the INNER JOIN variant of this query that skips Nauru completely, the OUTER
JOIN variant returns Nauru with a NULL value as its capital.

[LEFT [OUTER] | INNER] JOIN FETCH

JPA support of transparent navigation and fetch makes it very easy to use, since it provides the
illusion that all the database objects are available in memory for navigation. But this feature could
also cause performance problems.

For example, let's look at the following query execution and result iteration:

 TypedQuery<Country> query =
 em.createQuery("SELECT c FROM Country c", Country.class);
 List<Country> results = query.getResultList();
 for (Country c : results) {
 System.out.println(c.getName() + " => " + c.getCapital().getName());
 }

The query returns only Country instances. Consequently, the loop that iterates over the results
is inefficient, since retrieval of the referenced Capital objects is performed one at a time, i.e.
the number of round trips to the database is much larger than necessary.

A simple solution is to use the following query, which returnes exactly the same result objects
(Country instances):

SELECT c FROM Country c JOIN FETCH c.capital

The JOIN FETCH expression is not a regular JOIN and it does not define a JOIN variable. Its only
purpose is specifying related objects that should be fetched from the database with the query
results on the same round trip. Using this query improves the efficiency of iteration over the
result Country objects because it eliminates the need for retrieving the associated Capital
objects separately.

Notice, that if the Coutry and Capital objects are needed only for their names - the following report
query could be even more efficient:

SELECT c.name, c.capital.name FROM Country c

111

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Reserved Identifiers

The name of a JPQL query variable must a valid Java identifier but cannot be one of the following
reserved words:

ABS, ALL, AND, ANY, AS, ASC, AVG, BETWEEN, BIT_LENGTH, BOTH, BY,
CASE, CHAR_LENGTH, CHARACTER_LENGTH, CLASS, COALESCE, CONCAT, COUNT,
CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,DELETE, DESC, DISTINCT,
ELSE, EMPTY, END, ENTRY, ESCAPE, EXISTS, FALSE, FETCH,FROM, GROUP, HAVING,
IN, INDEX, INNER, IS, JOIN, KEY, LEADING, LEFT, LENGTH, LIKE,LOCATE, LOWER,
MAX, MEMBER, MIN, MOD, NEW, NOT, NULL, NULLIF, OBJECT, OF, OR, ORDER, OUTER,
POSITION, SELECT, SET, SIZE, SOME, SQRT, SUBSTRING, SUM, THEN,TRAILING,
TRIM, TRUE, TYPE, UNKNOWN, UPDATE, UPPER, VALUE, WHEN, WHERE.

JPQL variables as well as all the reserved identifiers in the list above are case insensitive. Therefore,
ABS, abs, Abs and aBs are all invalid variable names.

FROM and JOIN in Criteria Queries

FROM query identification variables are represented in criteria queries by sub interfaces of From :

• Range variables are represented by the Root interface.

• Join variables are represented by the Join interface (and its sub interfaces).

Criteria Query Roots

The CriteriaQuery 's from method serves as a factory of Root instances.

For example, the following JPQL query, which defines two uncorrelated range variables - c1, c2:

SELECT c1, c2 FROM Country c1, Country c2

can be built as a criteria query using the following code:

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c1 = q.from(Country.class);
 Root<Country> c2 = q.from(Country.class);
 q.multiselect(c1, c2);

112

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Unlike other CriteriaQuery methods - invocation of the from method does not override
a previous invocation of that method. Every time the from method is invoked - a new variable
is added to the query.

Criteria Query Joins

JOIN variables are represented in criteria queries by the Join interface (and its sub interfaces).

For example, the following JPQL query:

SELECT c, p.name FROM Country c LEFT OUTER JOIN c.capital p

can be built as a criteria query using the following code:

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 Join<Country> p = c.join("capital", JoinType.LEFT);
 q.multiselect(c, p.get("name"));

The From interface provides various forms of the join method. Every invocation of join adds
a new JOIN variable to the query. Since From is the super interface of both Root and
Join - join methods can be invoked on Root instances (as demonstrated above) as well as
on previously built Join instances.

Criteria Query Fetch Joins

The following JPQL query:

SELECT c FROM Country c JOIN FETCH c.capital

can be built as a criteria query using the following code:

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 Fetch<Country,Capital> p = c.fetch("capital");
 q.select(c);

Several forms of the fetch method are defined in the Path interface, which represents path
expressions and is also the super interface of the Root and Join interfaces.

113

ObjectDB Developer's Guide Chapter 4 - JPA Queries

4.2.3 JPQL WHERE
The WHERE clause adds filtering capabilities to the FROM-SELECT structure. It is essential in any
JPQL query that retrieves selective objects from the database. Out of the four optional clauses of
JPQL queries, the WHERE clause is definitely the most frequently used.

How a WHERE Clause Works

The following query retrieves only countries with population size that exceeds a specified limit,
which is represented by the parameter p:

SELECT c FROM Country c WHERE c.population > :p

The FROM clause of this query defines an iteration over all the Country objects in the database
using the c range variable. Before passing these Country objects to the SELECT clause for
collecting as query results, the WHERE clause gets an opportunity to function as a filter. The
boolean expression in the WHERE clause, which is also known as the WHERE predicate, defines
which objects to accept. Only Country objects for which the predicate expression evaluates to
TRUE are passed to the SELECT clause and then collected as query results.

WHERE Predicate and Indexes

Formally, the WHERE clause functions as a filter between the FROM and the SELECT clauses.
Practically, if a proper index is available , filtering is done earlier during FROM iteration. In the
above population query, if an index is defined on the population field ObjectDB can use that
index to iterate directly on Country objects that satisfy the WHERE predicate. For entity classes
with millions of objects in the database there is a huge difference in query execution time if proper
indexes are defined.

WHERE Filter in Multi Variable Queries

In a multi-variable query the FROM clause defines iteration on tuples. In this case the WHERE
clause filters tuples before passing them to the SELECT clause.

For example, the following query retrieves all the countries with population size that exceeds a
specified limit and also have an official language from a specified set of languages:

SELECT c, l FROM Country c JOIN c.languages l
WHERE c.population > :p AND l in :languages

114

ObjectDB Developer's Guide Chapter 4 - JPA Queries

The FROM clause of this query defines iteration over (country, language) pairs. Only pairs that
satisfy the WHERE clause are passed through to the SELECT.

In multi-variable queries the number of tuples for iteration might be very large even if the database
is small, making indexes even more essential.

JPQL Expressions in WHERE

The above queries demonstrate only a small part of the full capabilities of a WHERE clause.
The real power of the JPQL WHERE clause is derived from the rich JPQL expression syntax ,
which includes many operators (arithmetic operators, relational operators, logical operators)
and functions (numeric functions, string functions, collection functions). The WHERE predicate is
always a boolean JPQL expression. JPQL expressions are also used in other JPQL query clauses
but they are especially dominant in the WHERE clause.

WHERE in Criteria Queries

The CriteriaQuery interface provides two where methods for setting the WHERE clause.

Single Restriction

The first where method takes one Expression<Boolean> argument and uses it as the
WHERE clause content (overriding previously set WHERE content if any).

For example, the following JPQL query:

SELECT c FROM Country c WHERE c.population > :p

can be built by using the criteria query API as follows:

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 q.select(c);
 ParameterExpression<Integer> p = cb.parameter(Integer.class);
 q.where(cb.gt(c.get("population"), p));

Multiple Restrictions

The second where method takes a variable number of arguments of Predicate type and uses
an AND conjunction as the WHERE clause content (overriding previously set WHERE content if any):

115

ObjectDB Developer's Guide Chapter 4 - JPA Queries

For example, the following JPQL query:

SELECT c FROM Country WHERE c.population > :p AND c.area < :a

can be built as a criteria query as follows:

 CriteriaQuery q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 q.select(c);
 ParameterExpression<Integer> p = cb.parameter(Integer.class);
 ParameterExpression<Integer> a = cb.parameter(Integer.class);
 q.where(
 cb.gt(c.get("population"), p),
 cb.lt(c.get("area"), a)
);

The where setting above is equivalent to explicitly building an AND conjunction, as so:

 q.where(
 cb.and(
 cb.gt(c.get("population"), p),
 cb.lt(c.get("area"), a)
)
);

The variable argument form of the where method always uses AND. Therefore, using OR requires
building an OR expression explicitly:

 q.where(
 cb.or(
 cb.gt(c.get("population"), p),
 cb.lt(c.get("area"), a)
)
);

See the Logical Operators page for explanations on boolean expressions and predicates that can
be used in a criteria query WHERE clause.

116

ObjectDB Developer's Guide Chapter 4 - JPA Queries

4.2.4 JPQL GROUP BY
The GROUP BY clause enables grouping of query results. A JPQL query with a GROUP BY clause
returns properties of generated groups instead of individual objects and fields.

The position of a GROUP BY clause in the query execution order is after the FROM and WHERE
clauses, but before the SELECT clause. When a GROUP BY clause exists in a JPQL query, database
objects (or tuples of database objects) that are generated by the FROM clause iteration and pass
the WHERE clause filtering (if any) are sent to grouping by the GROUP BY clauses before arriving
at the SELECT clause.

GROUP BY as DISTINCT (no Aggregates)

The following query groups all the countries by their first letter:

SELECT SUBSTRING(c.name, 1, 1)
FROM Country c
GROUP BY SUBSTRING(c.name, 1, 1);

The FROM clause defines iteration over all the Country objects in the database. The GROUP BY
clause groups these Country objects by the first letter of the country name. The next step is to
pass the groups to the SELECT clause which returns the first letters as result.

ObjectDB is very flexible in allowing JPQL expressions anywhere in the query. Note that the query
above might not be supported by some JPA implementations. Only identification variables and
path expressions are currently supported in the GROUP BY clause by all the JPA implementations.

Grouping the Country objects makes them inaccessible to the SELECT clause as individuals.
Therefore, the SELECT clause can only use properties of the groups, which include:

• The properties that are used for grouping (each group has unique value combination).

• Aggregate calculations (count, sum, avg, max, min) that are carried out on all the objects
(or the object tuples) in the group.

The aggregate calculation gives the GROUP BY clause its power. Actually, without aggregate
calculations - the GROUP BY functions merely as a DISTINCT operator. For example, the above
query (which does not use aggregates) is equivalent to the following query:

SELECT DISTINCT SUBSTRING(c.name, 1, 1) FROM Country c

117

ObjectDB Developer's Guide Chapter 4 - JPA Queries

GROUP BY with Aggregate Functions

JPQL supports the five aggregate functions of SQL:

• COUNT - returns a long value representing the number of elements.

• SUM - returns the sum of numeric values.

• AVG - returns the average of numeric values as a double value.

• MIN - returns the minimum of comparable values (numeric, strings, dates).

• MAX - returns the maximum of comparable values (numeric, strings, dates).

The following query counts for every letter the number of countries with names that start with that
letter and the number of different currencies that are used by these countries:

SELECT SUBSTRING(c.name, 1, 1), COUNT(c), COUNT(DISTINCT c.currency)
FROM Country c
GROUP BY SUBSTRING(c.name, 1, 1);

The query returns Object[] arrays of length 3, in which the first cell contains the initial letter as
a String object, the second cell contains the number of countries in that letter's group as a Long
object and the third cell contains the distinct number of currencies that are in use by countries
in that group. The DISTINCT keyword in a COUNT aggregate expression, as demonstrated above),
eliminates duplicate values when counting.

Only the COUNT aggregate function can be applied to entity objects directly. Other aggregate
functions are applied to fields of objects in the group by using path expressions.

The following query groups countries in Europe by their currency, and for each group returns the
currency and the cumulative population size in countries that use that currency:

SELECT c.currency, SUM(c.population)
FROM Country c
WHERE 'Europe' MEMBER OF c.continents
GROUP BY c.currency

Because grouping is performed in this query on a path expression , this query is standard and it
is expected to be supported by all JPA implementations.

118

ObjectDB Developer's Guide Chapter 4 - JPA Queries

GROUP BY with HAVING

Groups in JPQL grouping queries can be filtered using the HAVING clause. The HAVING clause for
the GROUP BY clause is like the WHERE clause for the FROM clause. ObjectDB supports the HAVING
clause only when a GROUP BY clause exists.

The following query uses HAVING to change the previous query in a way that single country groups
are ignored:

SELECT c.currency, SUM(c.population)
FROM Country c
WHERE 'Europe' MEMBER OF c.continents
GROUP BY c.currency
HAVING COUNT(c) > 1

The HAVING clause stands as a filter between the GROUP BY clause and the SELECT clause in such
a way that only groups that are accepted by the HAVING filter are passed to the SELECT clause.
The same restrictions on SELECT clause in grouping queries also apply to the HAVING clause,
which means that individual object fields are inaccessible. Only group properties which are the
expressions that are used for grouping (e.g. c.currency) and aggregate expressions are allowed
in the HAVING clause.

Global Aggregates (no GROUP BY)

JPQL supports a special form of aggregate queries that do not have a GROUP BY clause in which
all the FROM/WHERE objects (or object tuples) are considered as one group.

For example, the following query returns the sum and average population in countries that use
the English language:

SELECT SUM(c.population), AVG(c.population)
FROM Country c
WHERE 'English' MEMBER OF c.languages

All the Country objects that pass the FROM/WHERE phase are considered as one group, for which
the cumulative population size and the average population size is then calculated. Any JPQL query
that contains an aggregate expression in the SELECT clause is considered a grouping query with
all the attached restrictions, even when a GROUP BY clause is not specified. Therefore, in this case,
only aggregate functions can be specified in the SELECT clause and individual objects and their
fields become inaccessible.

119

ObjectDB Developer's Guide Chapter 4 - JPA Queries

GROUP BY and HAVING in Criteria Queries

The CriteriaQuery interface provides methods for setting the GROUP BY and HAVING clauses.

For example, the following JPQL query:

SELECT c.currency, SUM(c.population)
FROM Country c
WHERE 'Europe' MEMBER OF c.continents
GROUP BY c.currency
HAVING COUNT(c) > 1

can be built using the criteria query API as follows:

CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 q.multiselect(c.get("currency"), cb.sum(c.get("population")));
 q.where(cb.isMember("Europe", c.get("continents")));
 q.groupBy(c.get("currency"));
 g.having(cb.gt(cb.count(c), 1));

The CriteriaBuilder interface provides methods for building aggregate expressions:

• count , countDistinct - return a long type expression representing the number of
elements.

• sum , sumAsLong , sumAsDouble - return an expression representing the sum of
values.

• avg - returns a double type expression representing the average of numeric values.

• min , least - return an expression representing the minimum of comparable values.

• max , greatest - return an expression representing the maximum of comparable
values.

The groupBy method takes a variable number of arguments specifying one or more grouping
expressions (or a list of expressions in another form of groupBy).

Setting a HAVING clause is very similar to setting a WHERE clause. As with the WHERE clause - two
forms of the having method are provided. One having form takes an Expression<Boolean>
argument and the other having form takes a variable number of Predicate arguments
(and uses an AND conjunction).

120

ObjectDB Developer's Guide Chapter 4 - JPA Queries

When a groupBy or a having method is invoked, previously set values (if any) are discarded.

4.2.5 JPQL ORDER BY
The ORDER BY clause specifies a required order for the query results. Any JPQL query that does
not include an ORDER BY clause produces results in an undefined and non-deterministic order.

ORDER BY Expressions

The following query returns names of countries whose population size is at least one million people,
ordered by the country name:

SELECT c.name FROM Country c WHERE c.population > 1000000 ORDER BY c.name

When an ORDER BY clause exists it is the last to be executed. First the FROM clause produces
objects for examination and the WHERE clause selects which objects to collect as results. Then
the SELECT clause builds the results by evaluating the result expressions. Finally the results are
ordered by evaluation of the the ORDER BY expressions.

Only expressions that are derived directly from expressions in the SELECT clause are allowed in the
ORDER BY clause. The following query, for example, is invalid because the ORDER BY expression
is not part of the results:

SELECT c.name
FROM Country c
WHERE c.population > 1000000
ORDER BY c.population

On the other hand, the following query is valid because, given a Country c, the c.population
expression can be evaluated from c:

SELECT c
FROM Country c
WHERE c.population > 1000000
ORDER BY c.population

When using ObjectDB, any JPQL expression whose type is comparable (i.e. numbers, strings and
date values) and is derived from the SELECT expressions can be used in the ORDER BY clause.

121

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Some JPA implementation are more restrictive. Path expressions are supported by all the JPA
implementations but support of other JPQL expressions is vendor dependent.

Query results can also be ordered by multiple order expressions. In this case, the first expression
is the primary order expression. Any additional order expression is used to order results for which
all the previous order expressions produce the same values.

The following query returns Country objects ordered by currency as the primary sort key and
by name as the secondary sort key:

SELECT c.currency, c.name
FROM Country c
ORDER BY c.currency, c.name

To avoid repeating result expressions in the ORDER BY JPQL supports defining aliases for SELECT
expressions and then using the aliases in the ORDER BY clause. The following query is equivalent
to the query above:

SELECT c.currency AS currency, c.name AS name
FROM Country c
ORDER BY currency, name

Alias variables are referred to as result variables to distinguish them from the identification
variables that are defined in the FROM clause.

Order Direction (ASC, DESC)

The default ordering direction is ascending. Therefore, when ascending order is required it is
usually omitted even though it could be specified explicitly, as follows:

SELECT c.name FROM Country c ORDER BY c.name ASC

On the other hand, to apply descending order the DESC keyword must be added explicitly to the
order expression:

SELECT c.name FROM Country c ORDER BY c.name DESC

122

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Grouping (GROUP BY) Order

The ORDER BY clause is always the last in the query processing chain. If a query contains both an
ORDER BY clause and a GROUP BY clause the SELECT clause receives groups rather than individual
objects and ORDER BY can order these groups. For example:

SELECT c.currency, SUM(c.population)
FROM Country c
WHERE 'Europe' MEMBER OF c.continents
GROUP BY c.currency
HAVING COUNT(c) > 1
ORDER BY c.currency

The ORDER BY clause in the above query orders the results by the currency name. Without an
ORDER BY clause the result order would be undefined.

ORDER BY in Criteria Queries

The CriteriaQuery interface provides methods for setting the ORDER BY clause.

For example, the following JPQL query:

SELECT c
FROM Country c
ORDER BY c.currency, c.population DESC

can be built using the criteria query API as follows:

 CriteriaQuery<Country> q = cb.createQuery(Country.class);
 Root<Country> c = q.from(Country.class);
 q.select(c);
 q.orderBy(cb.asc(c.get("currency")), cb.desc(c.get("population")));

Unlike other methods for setting criteria query clauses - the orderBy method takes a variable
number of Order instances as arguments (or a list of Order) rather than Expression
instances.

The Order interface is merely a thin wrapper around Expression , which adds order
direction - either ascending (ASC) or descending (DESC). The CriteriaBuilder's asc and
desc methods (which are demonstrated above) take an expression and return an ascending or
descending Order instance (respectively).

123

ObjectDB Developer's Guide Chapter 4 - JPA Queries

4.2.6 DELETE Queries
As explained in chapter 2 , entity objects can be deleted from the database by:

• Retrieving the entity objects into an EntityManager.

• Removing these objects from the EntityManager within an active transaction, either
explicitly by calling the remove method or implicitly by a cascading operation.

• Applying changes to the database by calling the commit method.

JPQL DELETE queries provide an alternative way for deleting entity objects. Unlike SELECT
queries, which are used to retrieve data from the database, DELETE queries do not retrieve data
from the database, but when executed, delete specified entity objects from the database.

Removing entity objects from the database using a DELETE query may be slightly more efficient
than retrieving entity objects and then removing them, but it should be used cautiously because
bypassing the EntityManager may break its synchronization with the database. For example,
the EntityManager may not be aware that a cached entity object in its persistence context has
been removed from the database by a DELETE query. Therefore, it is a good practice to use a
separate EntityManager for DELETE queries.

As with any operation that modifies the database, DELETE queries can only be executed within an
active transaction and the changes are visible to other users (which use other EntityManager
instances) only after commit.

Delete All Queries

The simplest form of a DELETE query removes all the instances of a specified entity class (including
instances of subclasses) from the database.

For example, the following three equivalent queries delete all the Country instances:

DELETE FROM Country // no variable
DELETE FROM Country c // an optional variable
DELETE FROM Country AS c // AS + an optional variable

ObjectDB supports using the java.lang.Object class in queries (as an extension to JPA), so the
following query can be used to delete all the objects in the database:

DELETE FROM Object

124

ObjectDB Developer's Guide Chapter 4 - JPA Queries

DELETE queries are executed using the executeUpdate method:

 int deletedCount = em.createQuery("DELETE FROM Country").executeUpdate();

A TransactionRequiredException is thrown if no transaction is active.

On success - the executeUpdate method returns the number of objects that have been deleted
by the query.

Selective Deletion

The structure of DELETE queries is very simple relative to the structure of SELECT queries. DELETE
queries cannot include multiple variables and JOIN, and cannot include the GROUP BY, HAVING
and ORDER BY clauses.

A WHERE clause, which is essential for removing selected entity objects, is supported.

For example, the following query deletes the countries with population size that is smaller than
a specified limit:

DELETE FROM Country c WHERE c.population < :p

The query can be executed as follows:

 Query query = em.createQuery(
 "DELETE FROM Country c WHERE c.population < :p");
 int deletedCount = query.setParameter(p, 100000).executeUpdate();

4.2.7 UPDATE Queries
Existing entity objects can be updated, as explained in chapter 2 , by:

• Retrieving the entity objects into an EntityManager.

• Updating the relevant entity object fields within an active transaction.

• Applying changes to the database by calling the commit method.

JPQL UPDATE queries provide an alternative way for updating entity objects. Unlike SELECT
queries, which are used to retrieve data from the database, UPDATE queries do not retrieve data
from the database, but when executed, update the content of specified entity objects in the
database.

125

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Updating entity objects in the database using an UPDATE query may be slightly more efficient
than retrieving entity objects and then updating them, but it should be used cautiously because
bypassing the EntityManager may break its synchronization with the database. For example, the
EntityManager may not be aware that a cached entity object in its persistence context has been
modified by an UPDATE query. Therefore, it is a good practice to use a separate EntityManager
for UPDATE queries.

As with any operation that modifies the database, UPDATE queries can only be executed within an
active transaction and the changes are visible to other users (which use other EntityManager
instances) only after commit.

Update All Queries

The simpler form of UPDATE queries acts on all the instances of a specified entity class in the
database (including instances of subclasses).

For example, the following three equivalent queries increase the population size of all the countries
by 10%:

UPDATE Country SET population = population * 11 / 10
UPDATE Country c SET c.population = c.population * 11 / 10
UPDATE Country AS c SET c.population = c.population * 11 / 10

The UPDATE clause defines exactly one range variable (with or without an explicit variable name)
for iteration. Multiple variables and JOIN are not supported. The SET clause defines one or more
field update expressions (using the range variable name - if defined).

Multiple field update expressions, separated by commas, are also allowed. For example:

UPDATE Country SET population = 0, area = 0

UPDATE queries are executed using the executeUpdate method:

 Query query = em.createQuery(
 "UPDATE Country SET population = 0, area = 0");
 int updateCount = em.executeUpdate();

A TransactionRequiredException is thrown if no transaction is active.

126

ObjectDB Developer's Guide Chapter 4 - JPA Queries

On success - the executeUpdate method returns the number of objects that have been modified
by the query.

Selective Update

UPDATE queries cannot include the GROUP BY, HAVING and ORDER BY clauses, but the WHERE
clause, which is essential for updating selected entity objects, is supported.

For example, the following query updates the population size of countries whose population size
that is smaller than a specified limit:

UPDATE Country
SET population = population * 11 / 10
WHERE c.population < :p

The query can be executed as follows:

 Query query = em.createQuery(
 "UPDATE Country SET population = population * 11 / 10 " +
 "WHERE population < :p");
 int updateCount = query.setParameter(p, 100000).executeUpdate();

4.3 Query Expressions
Query expressions are the foundations on which JPQL and criteria queries are built.

Every query consists of clauses - SELECT, FROM, WHERE, GROUP BY, HAVING and ORDER BY,
and each clause consists of JPQL / Criteria query expressions.

Atomic Expressions

The atomic query expressions are:

• JPQL / Criteria Variables

• JPQL / Criteria Parameters

• JPQL / Criteria Literals

Every query expression consists of at least one atomic component. More complex query
expressions are built by combining atomic expressions with operators and functions.

127

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Operators and Functions

JPQL / Criteria queries support the following operators (in order of decreasing precedence):

• Navigation operator (.)

• Arithmetic operators :
* (multiplication), / (division), + (addition) and - (subtraction).

• Comparison operators :
=, <>, <, <=,>, >=, IS [NOT] NULL, [NOT] BETWEEN,
including Collection operators: [NOT] IN, IS [NOT] EMPTY, [NOT] MEMBER [OF]
and the [NOT] LIKE operator.

• Logical operators : AND, OR, NOT.

In addition, JPA queries support predefined functions, which are also described in this section.

Organization of this Section

This section contains the following pages:

• Literals in JPQL and Criteria Queries

• Paths and Types in JPQL and Criteria API

• Numbers in JPQL and Criteria Queries

• Strings in JPQL and Criteria Queries

• Date and Time in JPQL and Criteria Queries

• Collections in JPQL and Criteria Queries

• Comparison in JPQL and Criteria API

• Logical Operators in JPQL and Criteria API

Detailed explanations on how to build criteria query expressions are provided as follows:

• Literals and Dates (literal , nullLiteral , currentDate , ...).

• Paths, navigation and types (get , type).

• Arithmetic expressions (sum , diff , prod , quot , mod , abs , neg , sqrt
).

• String expressions (like , length , locate , lower , upper , concat ,
substring, ...).

• Data expressions (currentDate , currentTime , currentTimestamp).

128

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• Collection expressions (isEmpty , isNotEmpty , isMember , isNotMember ,
size).

• Comparison expressions (equal , notEqual , gt , ge , lt , le , between ,
isNull , ...)

• Logical expressions (and , or , not , isTrue).

4.3.1 JPQL Literals
Literals in JPQL, as in Java, represent constant values. JPQL supports various types of literals
including NULL, boolean literals (TRUE and FALSE), numeric literals (e.g. 100), string literals
(e.g. 'abc'), enum literals (e.g. mypackage.MyEnum.MY_VALUE) and entity type literals (e.g.
Country).

JPQL literals should be used sparingly as queries that use parameters instead of literals are more
generic and efficient because they can be compiled once and then run many times with different
parameter values. Literals should only be embedded in JPQL queries when a single constant value
is always used and never replaced.

The NULL literal

The NULL literal represents a null value, similarly to null in Java and SQL. Since JPQL is case
insensitive, NULL, null and Null are equivalent. Notice that comparison with NULL in JPQL follows
the SQL rules for NULL comparison rather than the Java rules, as explained in the Comparison
Operators page.

Boolean Literals

Similarly to Java and SQL, JPQL supports two boolean literals - TRUE and FALSE. Since JPQL is case
insensitive, TRUE is equivalent to true and True, and FALSE is equivalent to false and False.

Numeric Literals

JPQL supports the Java syntax as well as the SQL syntax for numeric literals. Numeric suffixes (e.g.
1.5F) are also supported. Following are examples of valid numeric literals in JPQL:

• int: 100, -127, 0, 07777

• long: 100L, -127L, 0L, 07777L

• float: 3.14F, 0f, 1e2f, -2.f, 5.04e+17f

129

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• double: 3.14, 0d, 1e2D, -2., 5.04e+17

ObjectDB also supports hexadecimal numeric literals (e.g. 0xFF, 0xFFL) and octal numeric literals
(e.g. 077, 077L), a feature that is not currently supported by all JPA implementations.

String Literals

JPQL follows the syntax of SQL for string literals in which strings are always enclosed in single
quotes (e.g. 'Adam', '') and a single quote character in a string is represented by two single
quotes (e.g. 'Adam''s').

ObjectDB also supports the syntax of Java and JDO for string literals in which strings are enclosed
with double quotes (e.g. "Adam", "") and Java escape characters can be used (e.g. "Adam\'s",
"abcd\n1234") but this is not supported by all the JPA implementations.

Unlike most other JPQL components, String literals (which represent data) are case sensitive, so
'abc' and 'ABC' are not equivalent.

Date and Time Literals

JPQL follows the syntax of SQL and JDBC for date literals:

• Date - {d 'yyyy-mm-dd'} - for example: {d '2019-12-31'}

• Time - {t 'hh:mm:ss'} - for example: {t '23:59:59'}

• Timestamp - {ts 'yyyy-mm-dd hh:mm:ss'} - for example: {ts '2020-01-03 13:59:59'}

Enum Literals

JPA 2 adds support for enum literals. Enum literals in JPQL queries use the ordinary Java syntax for
enum values, but the fully qualified name of the enum type should always be specified.

For example, assuming we have the following enum definition:

package example.ui;

enum Color { RED, GREEN, BLUE }

Then example.ui.Color.RED is a valid literal in JPQL, but Color.RED is not.

130

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Entity Type Literals

Entity type literals represent entity types in JPQL, similar to the way that java.lang.Class
instances in Java represent Java types. Entity type literals have been added in JPA 2 to enable
selective retrieval by type.

In JPQL an entity type literal is written simply as the name of the entity class (e.g. Country).
That is equivalent to Country.class in Java code. Notice that the name of the entity class is not
enclosed in quotes (because type literals are not string literals).

By default, the name of an entity class is its unqualified name (i.e. excluding package name) but it
can be modified by specifying another name explicitly in the @Entity's name annotation element.

Criteria Query Literals

The CriteriaBuilder interface provides two factory methods for building literal expressions.

Ordinary Literals

The main method, literal , takes a Java object and returns a literal expression. For example:

131

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 // Boolean literals:
 Expression<Boolean> t = cb.literal(true);
 Expression<Boolean> f = cb.literal(Boolean.FALSE);

 // Numeric literals:
 Expression<Integer> i1 = cb.literal(1);
 Expression<Integer> i2 = cb.literal(Integer.ValueOf(2));
 Expression<Double> d = cb.literal(3.4);

 // String literals:
 Expression<String> empty = cb.literal("");
 Expression<String> jpa = cb.literal("JPA");

 // Date and Time literals:
 Expression<java.sql.Date> today = cb.literal(new java.sql.Date());
 Expression<java.sql.Time> time = cb.literal(new java.sql.Time());
 Expression<java.sql.Timestamp> now = cb.literal(new java.sql.Timestamp());

 // Enum literal:
 Expression<Color> red = cb.literal(Color.RED);

 // Entity Type literal:
 Expression<Class> type = cb.literal(MyEntity.class);

Null Literals

Null literal expressions can be built by the ordinary literal method:

 Expression n = cb.literal(null);

or by a special CriteriaBuilder 's method, nullLiteral , that returns a typed expression:

 Expression<String> strNull = cb.nullLiteral(String.class);
 Expression<Integer> intNull = cb.nullLiteral(Integer.class);

4.3.2 JPQL Paths and Types
Instances of user defined persistable classes (entity classes, mapped super classes and
embeddable classes) are represented in JPQL by the following types of expressions:

132

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• Variables - FROM identification variables and SELECT result variables.

• Parameters - when instances of these classes are assigned as arguments.

• Path expressions that navigate from one object to another.

Instances of user defined persistable classes can participate in direct comparison using the = and
<> operators. But more often they are used in JPQL path expressions that navigate to values of
simple types (number, boolean, string, date).

Simple type values are more useful in queries. They have special operators and functions (e.g.
for strings and for numbers), they can be compared by all six comparison operators , and they
can be used in ordering.

Navigation through Path Expressions

A path expression always starts with an instance of a user defined class (represented by a variable,
parameter or prefix path expression) and uses the dot (.) operator to navigate through persistent
fields to other objects and values.

For example - c.capital, where c represents a Country entity object uses the capital
persistent field in the Country class to navigate to the associated Capital entity object.

Path expression whose type is a persistable user class can be extended further by reusing the dot
(.) operator. For example, c.capital.name is a nested path expression that continues from the
Capital entity object to its name field. A path expression can be extended further only if its type is
also a user defined persistable class. The dot (.) operator cannot be applied to collections, maps
and values of simple types (number, boolean, string, date).

For a path expression to be valid the user defined persistable class must contain a persistent field
(or property) with a matching name. The path expression, however, is valid even if the persistent
field is declared as private (which is usually the case).

Navigation through a NULL value
The following query retrieves country names with their capital city names:

SELECT c.name, c.capital.name FROM Country c

The c identification variables is used for iteration over all the Country objects in the database.

133

ObjectDB Developer's Guide Chapter 4 - JPA Queries

For a country with no capital city, such as Nauru, c.capital is evaluated to NULL and
c.capital.name is an attempt to navigate from a NULL value. In Java, a NullPointerException
is thrown on any attempt to access a field or a method via a null reference. In JPQL, the current
FROM variable (or FROM tuple when there are multiple variables) is simply skipped. It might be
easier to understand exactly how this works by considering the equivalent JOIN query.

Entity Type Expressions

The TYPE operator (which is new in JPA 2) returns the type of a specified argument, similarly to
java.lang.Object's getClass method in Java.

The following query returns the number of all the entity objects in the database, excluding Country
entity objects:

SELECT COUNT(e) FROM Object e WHERE TYPE(e) <> Country

Binding an identification variable (e) to the Object class is an extension of ObjectDB that can be
used to iterate over all the entity objects in the database. The Country literal represents the
Country entity class. The TYPE operator returns the actual type of the iterated e. Only objects
whose type is not Country are passed to the SELECT. The SELECT clause counts all these objects
(this is an aggregate query with no GROUP BY - all the objects are considered as one group, and
COUNT calculates its size).

Criteria Query Paths and Types

Paths and navigations are represented in the JPA Criteria API by the Path interface and by its
subinterfaces (From , Root , Join and Join's descendants).

Path Expressions

The Root and Join interfaces (which are subinterfaces of From) represent FROM variables.
 FROM variable expressions are considered as basic paths and also serve as starting point for
building more complex paths through navigation.

Giving a Path instance, a child Path expression (which represents navigation from the parent
path through a persistent field or property), can be constructed by the get method:

134

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 // FROM Variable Paths:
 Root<Country> country = query.from(Country.class);
 Join<Country, Country> neighborCountry = country.join("neighbors");

 // Navigation Paths:
 Path<String> countryName = country.get("name");
 Path<City> capital = country.get("capital");
 Path<String> captialName = capital.get("name");

The path expressions in the above code can be divided into two main groups:

• FROM variable expressions , represented by subinterfaces of From (Root , Join) -
The creation of a FROM expression automatically modifies the query by adding a variable to
the FROM clause (representing iteration during query execution). The constructed variable
expression can also be used explicitly in other query clauses.

• Navigation expressions, represented by the Path interface -
The creation of a navigation path expression doesn't affect the built query directly. The
constructed expression must be integrated into query clauses explicitly to have effect.

Type Expressions

Entity type expressions can be constructed by the Path 's type method. For example, the
following criteria expression checks if the type of a specified entity e is not Country.

 Predicate p = cb.notEqual(e.type(), cb.literal(Country.class));

In the above example, the comparison is between the type of the e object (which may represent
any path including a root or a join) and the entity type Country (a criteria literal).

4.3.3 Numbers in JPQL
Numeric values may appear in JPQL queries in many forms:

• as numeric literals - e.g. 123, -12.5.

• as parameters - when numeric values are assigned as arguments.

• as path expressions - in navigation to persistent numeric fields.

• as aggregate expressions - e.g. COUNT.

• as collection functions - when the return value is numeric, e.g. INDEX, SIZE.

• as string functions - when the return value is numeric, e.g. LOCATE, LENGTH.

135

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• as composite arithmetic expressions that use operators and functions to combine simple
numeric values into a more complex expression.

Arithmetic Operators

The following arithmetic operators are supported by JPA:

• 2 unary operators: + (plus) and - (minus).

• 4 binary operators: + (addition), - (subtraction), * (multiplication) and / (division).

ObjectDB also supports the % (modulo) and the ~ (bitwise complement) operators that are
supported in Java and JDO. JPA follows Java numeric promotion principles. For example, the
resulting type of a binary arithmetic operation on an int value and a double value is double.

The ABS Function

The ABS function removes the minus sign from a specified argument and returns the absolute
value, which is always a positive number or zero.

For example:

• ABS(-5) is evaluated to 5

• ABS(10.7) is evaluated to 10.7

The ABS function takes as an argument a numeric value of any type and returns a value of the
same type.

The MOD Function

The MOD function calculates the remainder of the division of one number by another, similar to
the modulo operator (%) in Java (which is also supported by ObjectDB as an extension).

For example:

• MOD(11, 3) is evaluated to 2 (3 goes into 11 three times with a remainder
of 2)

• MOD(8, 4) is evaluated to 0 (4 goes into 8 twice with a remainder of 0)

The MOD function takes two integer values of any type and returns an integer value. If the two
operands share exactly the same type the result type is the same. If the two operands have

136

ObjectDB Developer's Guide Chapter 4 - JPA Queries

different types, numeric promotion is used as with binary arithmetic operations in Java (e.g. for
int and long operands the MOD function returns a long value).

The SQRT Function

The SQRT function returns the square root of a specified argument.

For example:

• SQRT(9) is evaluated to 3

• SQRT(2) is evaluated to 1.414213562373095

The SQRT function takes as an argument a numeric value of any type and always returns a double
value.

Criteria Query Arithmetic Expressions

JPQL arithmetic operators and functions (which are described above) are available also as JPA
criteria query expressions. The CriteriaBuilder interface provides factory methods for
building these expressions, as shown in the following examples.

Binary Operators

The creation of a binary arithmetic operator requires two operands. At least one operand must
be a criteria numeric expression. The other operand may be either another numeric expression
or a simple Java numeric object:

137

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 // Create path and parameter expressions:
 Expression<Integer> path = country.get("population");
 Expression<Integer> param = cb.parameter(Integer.class);

 // Addition (+)
 Expression<Integer> sum1 = cb.sum(path, param); // 2 expressions
 Expression<Integer> sum2 = cb.sum(path, 1000); // expression + number
 Expression<Integer> sum3 = cb.sum(1000, path); // number + expression

 // Subtraction (-)
 Expression<Integer> diff1 = cb.diff(path, param); // 2 expressions
 Expression<Integer> diff2 = cb.diff(path, 1000); // expression - number
 Expression<Integer> diff3 = cb.diff(1000, path); // number - expression

 // Multiplication (*)
 Expression<Integer> prod1 = cb.prod(path, param); // 2 expressions
 Expression<Integer> prod2 = cb.prod(path, 1000); // expression * number
 Expression<Integer> prod3 = cb.prod(1000, path); // number * expression

 // Division (/)
 Expression<Integer> quot1 = cb.quot(path, param); // 2 expressions
 Expression<Integer> quot2 = cb.quot(path, 1000); // expression / number
 Expression<Integer> quot3 = cb.quot(1000, path); // number / expression

 // Modulo (%)
 Expression<Integer> mod1 = cb.mod(path, param); // 2 expressions
 Expression<Integer> mod2 = cb.mod(path, 1000); // expression % number
 Expression<Integer> mod3 = cb.mod(1000, path); // number % expression

The above examples demonstrate only integer expressions, but all the numeric types (byte,
short, int, long, float, double, BigInteger, BigDecimal) are supported.

Unary Operators

Creation of the unary minus (-) operator and the ABS and SQRT functions requires one operand,
which must be a numeric expression:

 Expression<Integer> abs = cb.abs(param); // ABS(expression)
 Expression<Integer> neg = cb.neg(path); // -expression
 Expression<Integer> sqrt = cb.sqrt(cb.literal(100)); // SQRT(expression)

138

ObjectDB Developer's Guide Chapter 4 - JPA Queries

As shown above, a number can always be converted to a numeric expression by using the
literal method.

4.3.4 Strings in JPQL
String values may appear in JPQL queries in various forms:

• as string literals - e.g. 'abc', ''.

• as parameters - when string values are assigned as arguments.

• as path expressions - in navigation to persistent string fields.

• as results of predefined JPQL string manipulation functions.

LIKE - String Pattern Matching with Wildcards

The [NOT] LIKE operator checks if a specified string matches a specified pattern. The pattern may
include ordinary characters as well as the following wildcard characters:

• The percent character (%) - which matches zero or more of any character.

• The underscore character (_) - which matches any single character.

The left operand is always the string to check for a match (usually a path expression) and the right
operand is always the pattern (usually a parameter or literal). For example:

• c.name LIKE '_r%' is TRUE for 'Brazil' and FALSE for 'Denmark'

• c.name LIKE '%' is always TRUE (for any c.name value).

• c.name NOT LIKE '%' is always FALSE (for any c.name value).

To match an actual underscore or percent character it has to be preceded by an escape character,
which is also specified. For example:

• '100%' LIKE '%\%' ESCAPE '\' is evaluated to TRUE.

• '100' LIKE '%\%' ESCAPE '\' is evaluated to FALSE.

In the expressions above only the first percent character (%) is a wildcard. The second (which
appears after the escape character) represents a real % character.

LENGTH - Counting Characters in a String

The LENGTH(str) function returns the number of characters in the argument string as an int.

139

ObjectDB Developer's Guide Chapter 4 - JPA Queries

For example:

• LENGTH('United States') is evaluated to 13.

• LENGTH('China') is evaluated to 5.

LOCATE - Locating Substrings

The LOCATE(str, substr [, start]) function searches a substring and returns its position.

For example:

• LOCATE('India', 'a') is evaluated to 5.

• LOCATE ('Japan', 'a', 3) is evaluated to 4.

• LOCATE ('Mexico', 'a') is evaluated to 0.

Notice that positions are one-based (as in SQL) rather then zero-based (as in Java). Therefore, the
position of the first character is 1. Zero (0) is returned if the substring is not found.

The third argument (when present) specifies from which position to start the search.

LOWER and UPPER - Changing String Case

The LOWER(str) and UPPER(str) functions return a string after conversion to lowercase or
uppercase (respectively).

For example:

• UPPER('Germany') is evaluated to 'GERMANY'.

• LOWER(' Germany ') is evaluated to 'germany'.

TRIM - Stripping Leading and Trailing Characters

The TRIM([[LEADING|TRAILING|BOTH] [char] FROM] str) function returns a string after
removing leading and/or trailing characters (usually space characters).

For example:

• TRIM(' UK ') is evaluated to 'UK'.

• TRIM(LEADING FROM ' UK ') is evaluated to 'UK '.

• TRIM(TRAILING FROM ' UK ') is evaluated to ' UK'.

• TRIM(BOTH FROM ' UK ') is evaluated to 'UK'.

140

ObjectDB Developer's Guide Chapter 4 - JPA Queries

By default, space characters are removed, but any other character can also be specified:

• TRIM('A' FROM 'ARGENTINA') is evaluated to 'RGENTIN.

• TRIM(LEADING 'A' FROM 'ARGENTINA') is evaluated to 'RGENTINA'.

• TRIM(TRAILING 'A' FROM 'ARGENTINA') is evaluated to 'ARGENTIN'.

CONCAT - String Concatenation

The CONCAT(str1, str2, ...) function returns the concatenation of the specified strings.

For example:

• CONCAT('Serbia', ' and ', 'Montenegro') is evaluated to 'Serbia and
Montenegro'.

SUBSTRING - Getting a Portion of a String

The SUBSTRING(str, pos [, length]) function returns a substring of a specified string.

For example:

• SUBSTRING('Italy', 3) is evaluated to 'aly'.

• SUBSTRING('Italy', 3, 2) is evaluated to 'al'.

Notice that positions are one-based (as in SQL) rather then zero based (as in Java). If length is not
specified (the third optional argument), the entire string suffix, starting at the specified position,
is returned.

Java String Methods (ObjectDB Extension)

ObjectDB also supports ordinary Java String methods.

For example:

• 'Canada'.length() is evaluated to 6.

• 'Poland'.toLowerCase() is evaluated to 'poland'.

The matches method of the String class can be useful when there is a need for pattern matching
using regular expressions (which are more powerful than the LIKE operator).

141

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Criteria Query String Expressions

JPQL string operators and functions (which are described above) are available also as JPA criteria
query expressions. The CriteriaBuilder interface provides factory methods for building
these expressions, as shown in the following examples:

142

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 // Create path and parameter expressions:
 Expression<String> path = country.get("name");
 Expression<String> param = cb.parameter(String.class);

 // str [NOT] LIKE pattern
 Predicate l1 = cb.like(path, param);
 Predicate l2 = cb.like(path, "a%");
 Predicate l3 = cb.notLike(path, param);
 Predicate l4 = cb.notLike(path, "a%");
 // additional methods take also an escape character

 // LENGTH(str)
 Expression<Integer> length = cb.length(path);

 // LOCATE(str, substr [, start])
 Expression<Integer> l1 = cb.locate(path, param);
 Expression<Integer> l2 = cb.locate(path, "x");
 Expression<Integer> l3 = cb.locate(path, param, cb.literal(2));
 Expression<Integer> l4 = cb.locate(path, "x", 2);

 // LOWER(str) and UPPER(str)
 Expression<String> lower = cb.lower(path);
 Expression<String> upper = cb.upper(param);

 // TRIM([[LEADING|TRAILING|BOTH] [char] FROM] str)
 Expression<String> t1 = cb.trim(path);
 Expression<String> t2 = cb.trim(literal(' '), path);
 Expression<String> t3 = cb.trim(' ', path);
 Expression<String> t4 = cb.trim(Trimspec.BOTH, path);
 Expression<String> t5 = cb.trim(Trimspec.LEADING, literal(' '), path);
 Expression<String> t6 = cb.trim(Trimspec.TRAILING, ' ', path);

 // CONCAT(str1, str2)
 Expression<String> c1 = cb.concat(path, param);
 Expression<String> c2 = cb.concat(path, ".");
 Expression<String> c3 = cb.concat("the", path);

 // SUBSTRING(str, pos [, length])
 Expression<String> s1 = cb.substring(path, cb.literal(2));
 Expression<String> s2 = cb.substring(path, 2);
 Expression<String> s3 = cb.substring(path, cb.literal(2), cb.literal(3));

143

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 Expression<String> s4 = cb.substring(path, 2, 3);

As demonstrated above, most methods are overloaded in order to support optional arguments
and when applicable simple Java objects as well as criteria expressions.

4.3.5 Date and Time in JPQL
Date and time expressions may appear in JPQL queries:

• as date and time literals - e.g. {d '2011-12-31'}, {t '23:59:59'}.

• as parameters - when date and time values are assigned as arguments.

• as path expressions - in navigation to persistent date and time fields.

• as results of predefined JPQL current date and time functions.

Current Date and Time

JPA defines special JPQL expressions that are evaluated to the date and time on the database
server when the query is executed:

• CURRENT_DATE - is evaluated to the current date (a java.sql.Date instance).

• CURRENT_TIME - is evaluated to the current time (a java.sql.Time instance).

• CURRENT_TIMESTAMP - is evaluated to the current timestamp, i.e. date and time
(a java.sql.Timestamp instance).

Extracting Date Parts

JPA doesn't define standard methods for extracting date and time parts but some JPA
implementations, as well as ObjectDB, support such functions as an extension. ObjectDB supports
6 functions for extracting the YEAR, MONTH, DAY, HOUR, MINUTE and SECOND.

For example:

• YEAR({d '2011-12-31'}) is evaluated to 2011.

• MONTH({d '2011-12-31'}) is evaluated to 12.

• DAY({d '2011-12-31'}) is evaluated to 31.

• HOUR({t '23:59:00'}) is evaluated to 23.

• MINUTE({t '23:59:00'}) is evaluated to 59.

• SECOND({t '23:59:00'}) is evaluated to 0.

144

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Date and Time in Criteria Queries

The CriteriaBuilder interface provides three factory methods for building date and time
expressions that represent the current date and/or time:

 // Create current date expression:
 Expression<javax.sql.Date> date = cb.currentDate(); // date only

 // Create current time expression:
 Expression<javax.sql.Time> time = cb.currentTime(); // time only

 // Create current date & time expression:
 Expression<javax.sql.Timestamp> ts = cb.currentTimestamp(); // both

Unlike constant date literals which are built once on the client side, the current date and time
expressions are reevaluated on the server on every query execution to reflect the date and time
when the query is run.

Functions for extracting date and time parts are also available in criteria queries by using the
generic CriteriaBuilder 's function method, as follow:

 // Create expressions that extract date parts:
 Expression<Integer> year = cb.function("year", Integer.class, date);
 Expression<Integer> month = cb.function("month", Integer.class, date);
 Expression<Integer> day = cb.function("day", Integer.class, ts);

 // Create expressions that extract time parts:
 Expression<Integer> hour = cb.function("hour", Integer.class, time);
 Expression<Integer> minute = cb.function("minute", Integer.class, time);
 Expression<Integer> second = cb.function("second", Integer.class, ts);

4.3.6 Collections in JPQL
Collections may appear in JPQL queries:

• as parameters - when collections are assigned as arguments.

• as path expressions - in navigation to persistent collection fields.

145

ObjectDB Developer's Guide Chapter 4 - JPA Queries

IS [NOT] EMPTY

The IS [NOT] EMPTY operator checks whether a specified collection is empty or not.

For example:

• c.languages IS EMPTY is TRUE if the collection is empty and FALSE otherwise.

• c.languages IS NOT EMPTY is FALSE if the collection is empty and TRUE otherwise.

SIZE

The SIZE(collection) function returns the number of elements in a specified collection.

For example:

• SIZE(c.languages) is evaluated to the number of languages in that collection.

[NOT] MEMBER [OF]

The [NOT] MEMBER OF operator checks if a specified element is contained in a specified persistent
collection field.

For example:

• 'English' MEMBER OF c.languages is TRUE if languages contains 'English' and
FALSE if not.

• 'English' NOT MEMBER OF c.languages is TRUE if languages does not contain
'English'.

[NOT] IN

The [NOT] IN operator provides an additional method for checking if a specified element is
contained in a collection.

JPA distinguishes between the MEMBER OF operator, which should be used for checking a collection
field, and the IN operator, which should be used for checking other collections, such as a collection
that is passed to the query as a parameter.

For example:

• 'English' IN :languages is TRUE if the argument for the languages parameter is a
collection that contains 'English' and FALSE if not.

146

ObjectDB Developer's Guide Chapter 4 - JPA Queries

• 'English' NOT IN :languages is TRUE if the argument for the languages parameter
 is a collection that doesn't contain 'English'.

ObjectDB enables as an extension to standard JPQL to use both operators (IN and MEMBER OF)
with any type of collection, so in ObjectDB these operators are treated as synonyms.

Criteria Query Collection Expressions

JPQL collection operators and functions (which are described above) are available also as JPA
criteria query expressions. The CriteriaBuilder interface provides factory methods for
building these expressions, as shown in the following examples:

 // Create path and parameter expressions:
 Expression<Collection<String>> languages = country.get("languages");
 Expression<String> param = cb.parameter(String.class);

 // collection IS [NOT] EMPTY
 Predicate e1 = cb.isEmpty(languages);
 Predicate e2 = cb.isNotEmpty(languages);

 // element [NOT] MEMBER OF collection
 Predicate m1 = cb.isMember(param, languages);
 Predicate m2 = cb.isMember("English", languages);
 Predicate m3 = cb.isNotMember(param, languages);
 Predicate m4 = cb.isNotMember("French", languages);

 // element [NOT] IN collection:
 Predicate i1 = param.in(languages);
 Predicate i2 = param.in("English", "French");

 // SIZE(collection)
 Expression<Integer> size = cb.size(languages);

4.3.7 Comparison Operators
Most JPQL queries use at least one comparison operator in their WHERE clause.

147

ObjectDB Developer's Guide Chapter 4 - JPA Queries

Comparison Operators

ObjectDB supports two sets of comparison operators, as shown in the following table:

 Set 1 - JPQL / SQL Set 2 - Java / JDO
Less Than < <
Greater Than > >
Less Than or Equal To <= <=
Greater Than or Equal To >= >=
Equal = ==
Not Equal <> !=

The two sets differ in the Equal and the Not Equal operators. JPQL follows the SQL notation, where
Java uses its own notation (which is also in use by JDOQL, the JDO Query Language). ObjectDB
supports both forms. Besides the different notation, there is also a difference in the way that NULL
values are handled by these operators.

Comparing NULL values

The following table shows how NULL values are handled by each comparison operator. One column
presents comparison of NULL value with a non NULL value. The other column presents comparison
of two NULL values:

Operators One NULL operand Two NULL operands
<, <=, >, >= NULL NULL
= NULL NULL
<> NULL NULL
== FALSE TRUE
!= TRUE FALSE

Comparison operators are always evaluated to TRUE, FALSE or NULL.

When both operands are not NULL (not shown in the table) the operator is evaluated to either
TRUE or FALSE, and in that case, == is equivalent to = and != is equivalent to <>.

When at least one of the two operands is NULL, == and != implement the ordinary Java logic,
in which, for example, null == null is true. All the other operators implement the SQL logic
in which NULL represents an unknown value and expressions that include an unknown value are
evaluated as unknown, i.e. to NULL.

148

ObjectDB Developer's Guide Chapter 4 - JPA Queries

IS [NOT] NULL

To check for NULL using standard JPQL you can use the special IS NULL and IS NOT NULL
operators which are provided by JPQL (and SQL):

c.president IS NULL
c.president IS NOT NULL

The expressions above are equivalent (respectively) to the following non standard JPQL (but
standard Java and JDOQL) expressions:

c.president == null
c.president != null

Comparable Data Types

Comparison is supported for values of the following data types:

• Values of numeric types, including primitive types (byte, short, char, int, long, float,
double), wrapper types (Byte, Short, Character, Integer, Long, Float, Double),
BigInteger and BigDecimal can be compared by using any comparison operator.

• String values can be compared by using any comparison operator.
Equality operators (=, <>, ==, !=) on strings in queries follow the logic of Java's equals,
comparing the content rather than the identity.

• Date values can be compared by using any comparison operator.
Equality operators (=, <>, ==, !=) on date values in queries follow the logic of equals,
comparing the content rather than the identity.

• Values of the boolean and Boolean types can be compared by equality operators (=, <>,
==, !=) which follow the logic of Java's equals (for Boolean instances).

• Enum values can be compared by using the equality operators (=, <>, ==, !=).

• Instances of user defined classes (entity classes and embeddable classes) can be compared
by using the equality operators (=, <>, ==, !=). For entities, e1 = e2 if e1 and e2 have
the same type and the same primary key value. For embeddable objects, e1 = e2 if e1 and
e2 have exactly the same content.

ObjectDB supports comparison of any two values that belong to the same group as detailed above.
Therefore, for example, a double value can be compared to a BigInteger instance but not
to a String instance.

149

ObjectDB Developer's Guide Chapter 4 - JPA Queries

[NOT] BETWEEN

The BETWEEN operator is a convenient shortcut that can replace two simple comparisons.

The two following expressions are equivalent (:min and :max are query parameters):

x BETWEEN :min AND :max

x >= :min AND x <= :max

Similarly, NOT BETWEEN is also a shortcut and the following expressions are equivalent:

x NOT BETWEEN :min AND :max

x < :min OR x > :max

Criteria Query Comparison

JPQL comparison operators (which are described above) are available also as JPA criteria query
expressions. The CriteriaBuilder interface provides factory methods for building these
expressions, as shown in the following examples:

150

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 // Create String path and parameter expressions:
 Expression<String> name = country.get("name");
 Expression<String> nameParam = cb.parameter(String.class);

 // Create Integer path and parameter expressions:
 Expression<Integer> area = country.get("area");
 Expression<Integer> areaParam = cb.parameter(Integer.class);

 // Equal (=)
 Predicate eq1 = cb.equal(name, nameParam);
 Predicate eq2 = cb.equal(name, "India");
 Predicate eq3 = cb.equal(area, areaParam);
 Predicate eq4 = cb.equal(area, 1000000);

 // Not Equal (<>)
 Predicate ne1 = cb.notEqual(name, nameParam);
 Predicate ne2 = cb.notEqual(name, "India");
 Predicate ne3 = cb.notEqual(area, areaParam);
 Predicate ne4 = cb.notEqual(area, 1000000);

 // Greater Than (>)
 Predicate gt1 = cb.greaterThan(name, nameParam);
 Predicate gt2 = cb.greaterThan(name, "India");
 Predicate gt3 = cb.gt(area, areaParam);
 Predicate gt4 = cb.gt(area, 1000000);

 // Greater Than or Equal (>=)
 Predicate ge1 = cb.greaterThanOrEqualTo(name, nameParam);
 Predicate ge2 = cb.greaterThanOrEqualTo(name, "India");
 Predicate ge3 = cb.ge(area, areaParam);
 Predicate ge4 = cb.ge(area, 1000000);

 // Less Than (<)
 Predicate lt1 = cb.lessThan(name, nameParam);
 Predicate lt2 = cb.lessThan(name, "India");
 Predicate lt3 = cb.lt(area, areaParam);
 Predicate lt4 = cb.lt(area, 1000000);

 // Less Than or Equal (<=)
 Predicate le1 = cb.lessThanOrEqualTo(name, nameParam);
 Predicate le2 = cb.lessThanOrEqualTo(name, "India");

151

ObjectDB Developer's Guide Chapter 4 - JPA Queries

 Predicate le3 = cb.le(area, areaParam);
 Predicate le4 = cb.le(area, 1000000);

 // BETWEEN
 Predicate b1 = cb.between(name, nameParam, cb.literal("Y"));
 Predicate b2 = cb.between(name, "X", "Y");
 Predicate b3 = cb.between(area, areaParam, cb.literal(2000000));
 Predicate b4 = cb.between(area, 1000000, 2000000);

 // IS [NOT] NULL
 Predicate n1 = cb.isNull(name);
 Predicate n2 = cb.isNotNull(name);

As demonstrated above, the first argument of every one of these methods is a criteria expression.
The second argument (and the third argument in between) can be either a criteria expression
or a comparable Java object.

The 2 letter methods (gt, ge, lt, le) can only be used for numeric comparison. The other
methods can be used with any comparable objects (and isNull and isNotNull also take a
non comparable object as an argument). For comparison of numbers, gt and greaterThan are
equivalent, but it is a good practice to use the short form (gt) when applicable to emphasis a
numeric comparison.

.

4.3.8 Logical Operators
Logical operators in JPQL and in JPA criteria queries enable composition of complex JPQL boolean
expressions out of simple JPQL boolean expressions.

Logical Operators

ObjectDB supports 2 sets of logical operators, as shown in the following table:

Set 1 - JPQL / SQL Set 2 - Java / JDO
AND &&
OR ||
NOT !

152

ObjectDB Developer's Guide Chapter 4 - JPA Queries

JPQL follows the SQL notation, while Java uses its own notation (which is also in use by JDOQL, the
JDO Query Language). ObjectDB supports both forms.

Binary AND (&&) Operator

The following query retrieves countries whose population and area (both) exceed specified limits:

SELECT c FROM Country c
WHERE c.population > :population AND c.area > :area

A valid operand of an AND operator must be one of: TRUE, FALSE, and NULL.

The following table shows how the AND operator is evaluated based on its two operands:

 TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

NULL represents unknown. Therefore, if one operand is NULL and the other operand is FALSE the
result is FALSE, because one FALSE operand is sufficient for a FALSE result. If one operand is
NULL and the other operand is either TRUE or NULL, the result is NULL (unknown).

ObjectDB supports the Java/JDO && operator as a synonym of AND as part of its JDO support.

Binary OR (||) Operator

The following query retrieves countries whose population or area exceeds a specified limit:

SELECT c FROM Country c
WHERE c.population > :population OR c.area > :area

A valid operand of an OR operator must be one of: TRUE, FALSE, and NULL.

The following table shows how the OR operator is evaluated based on its two operands:

 TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

153

ObjectDB Developer's Guide Chapter 4 - JPA Queries

NULL represents unknown. Therefore, if one operand is NULL and the other operand is TRUE the
result is TRUE, because one TRUE operand is sufficient for a TRUE result. If one operand is NULL
and the other operand is either FALSE or NULL, the result is NULL (unknown).

ObjectDB supports the Java/JDO || operator as a synonym for OR as part of its JDO support.

Unary NOT (!) Operator

The following query retrieves all the countries whose population does not exceed a specified limit:

SELECT c FROM Country c
WHERE NOT (c.population > :population)

The operand of a NOT operator must be one of: TRUE, FALSE, or NULL.

The following table shows how the NOT operator is evaluated based on its operand:

TRUE FALSE NULL
FALSE TRUE NULL

If the operand is NULL, which represents unknown, the result is also NULL (unknown).

ObjectDB also supports the Java/JDO ! operator as a replacement for NOT as part of its JDO support.

Criteria Query Logical Operators

Boolean Expressions and Predicates

Boolean expressions are represented in criteria queries by Expression <Boolean> and
descendant interfaces. For example, a boolean path (a field or a property) is represented by
Path<Boolean>:

 Path<Boolean> isInUN = country.get("isInUN");
 Path<Boolean> isInEU = country.get("isInEU");
 Path<Boolean> isInOECD = country.get("isInOECD");

Predicate is a special sub interface of Expression<Boolean> that represents many operator
and function expressions whose type is boolean - such as comparison operators:

 Predicate isLarge = cb.gt(country.get("area"), 1000000);

154

ObjectDB Developer's Guide Chapter 4 - JPA Queries

AND / OR Expressions

The CriteriaBuilder interface provides factory methods that take two Expression<Boolean>
operands (including Predicate instances) and return a new Predicate instance:

 Predicate p1 = cb.and(isInUN, isInEU); // Member of both UN and EU
 Predicate p2 = cb.or(isInOECD, isLarge); // Either OECD member or large

Additional factory methods are available for a variant number of predicates:

 Predicate p3 = cb.and(p1, isLarge, cb.isTrue(isInOECD));
 Predicate p4 = cb.or(p2, cb.isTrue(isInUN), cb.isTrue(isInEU));

In the above code non Predicate boolean expressions are converted to Predicate instances
using the isTrue method. This is required because in the non binary version the factory
methods accept only Predicate instances as arguments.

NOT Expression

There are two ways to create a NOT operator:

 Predicate p5 = cb.not(isInUN);
 Predicate p6 = isLarge.not();

The CriteriaBuilder's not method creates a Predicate by negation of a specified boolean
expression. Alternatively, to create a negation of a Predicate instance, the Predicate's not
method can be invoked.

155

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Chapter 5 - Tools and Utilities
This chapter explains how to use the following ObjectDB tools and utilities:

• Database Explorer

• Database Server

• JPA / JDO Class Enhancer

• Database Replication and Clustering

• Online Backup

• Database Doctor

• Database Transaction Replayer

• BIRT/ODA ObjectDB Driver

5.1 Database Explorer
ObjectDB Database Explorer is a visual GUI tool for managing ObjectDB databases. It can be used
to view data in ObjectDB databases, execute JPQL and JDOQL queries and edit the content of
databases.

156

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Running the Explorer

The ObjectDB Explorer is contained in the explorer.jar executable jar file, which is located in
the bin directory of ObjectDB. It depends on the objectdb.jar file.

You can run it from the command line as follows:

> java -jar explorer.jar

If explorer.jar is not in the current directory a path to it has to be specified.

Alternatively, you can run the Explorer by double clicking explorer.jar or by running
explorer.exe (on Windows) or explorer.sh (on Unix/Linux, after editing the shell file, setting
the paths to the objectdb.jar file and to the JVM).

157

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Connecting to the Database

Opening a Database Connection

To open a local database file in embedded mode use the File > Open Embedded... command and
select a local database file.

To open a database in client-server mode select File > Open C/S Connection... and provide host,
port, username and password for a client-server connection. You also have to specify a database
path on the server, possibly using the Browse button.

Recently used databases can also be opened using the File > Recent Connections command. By
default, when the Explorer starts it tries to open a connection to the most recently used database
automatically.

Tabbed Windows

Three tabbed windows are displayed on the left side of the Explorer when a database is open:

• The [Database] window is split into two sub windows. The top sub window displays general
information about the database and the bottom sub window displays a list of bookmarked
entity objects.

• The [Schema] window shows the user defined persistable types (entity and embeddable
classes) in the database and their persistent fields and indexes.

• The [Query] window enables running JPQL and JDOQL queries, as discussed below.

Closing a Database Connection

Use the File > Close menu command to close a currently open database connection.

Viewing Database Content

Viewer Windows

The Explorer provides two types of viewer windows for viewing the database data.

The Table window follows the approach of traditional visual database tools. Every row in the table
represents a single object, every column represents a persistent field, and the content of a cell
is the value of a single field in a single database object. This type of viewer is useful for viewing
data of a simple object model.

158

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

In most cases, the Tree window, which is designed to handle more complex object models, is
preferred. A Tree window displays objects as a tree. Every database object is represented by a
tree node and the values of its persistent fields are represented as child nodes. Tree windows
provide easier navigation. Because every reference between two database objects is represented
by a parent-child relationship in the tree, you can navigate among objects by expanding nodes in
the tree, similar to exploring objects in a visual debugger. Notice that the same database object
may be accessed using different paths in the tree and therefore may be represented by more than
one node. To help identify circles in the graph of objects, a special {R} sign (indicating recursive)
is displayed for an object that is already shown in a higher level of the same tree path (i.e. the
object is a descendant of itself in the tree).

To open a new viewer window either write a query in the [Query] tabbed window or select an
element for viewing (an entity class in the [Schema] tabbed window, a bookmark in the [Database]
tabbed window or an object in a currently open Table or Tree window). You can open a new viewer
window using the Window > Open Tree Window and Window > Open Table Window commands.
When the target element is an object in an open viewer window the Window > Focus Selection
command switches the current viewer to focus on the selected object.

Executing Queries

The [Query] window on the left side enables execution of JPQL and JDOQL queries.

To execute a query:

• Enter a query string.

• In the [Parameters] table provide arguments for parameters (if any). An entity object can
be specified by type and primary key separated by # (e.g. Point#1). A collection can be
specified as a comma separated list of elements.

• Use the [First] and [Max] fields to set the result range.

• Check [Disable Cache] to bypass query program and result caches.

• Click the Execute button to run the query.

If the query is valid, a default viewer (a Tree window by default) is opened with the query results
and the size of the result collection and the query execution time are displayed on the query
window. If the query compilation fails, an error is displayed on the query window and no viewer
window is opened. You can also execute a query using the Window > Open Tree Window or the
Window > Open Table Window commands in order to specify a preferred viewer window type for
the results.

159

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

On the bottom of the query window there is a log panel that displays the selected query execution
plan. This is useful, for example, for checking which indexes are used.

The Reset button clears the content of all the fields.

Refreshing the Cache

When a database is open in the Explorer in client server mode, it can be accessed simultaneously
by other applications. If the database is modified by another process the viewer windows in the
Explorer might display cached content that does not reflect the up to date data in the database. In
this case you can refresh the cache and the viewer windows using the File > Refresh Data menu
command.

Using Bookmarks

To bookmark an entity object for easier future access - first select it in a viewer window and then
select the Tools > Bookmark... command, specify a bookmark name and click OK. Bookmarked
entity objects can be accessed from the [Database] tabbed window.

Editing Database Content

The Explorer is used mainly as a viewer of databases but it can also function as an editor.

New Entity Objects

To construct new entity objects and store them in the database, open the [Create New Entity
Objects] dialog box using the Edit > New Entity Objects... command. In the dialog box select the
entity class and specify the number of objects to construct. Click the Create and Persist button to
construct and store the new entity objects.

Editing Values and References

You can edit simple field values inline in the Tree and Table viewer windows. Editing is started by
double clicking the field, pressing F2, or even by simply typing the new value. Use the Edit > Edit
Multi Line String command to edit a multi line string.

Reference fields can be edited by using the following commands:

• The Edit > Set Reference > Set to Null command is used to set a reference to null.

160

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

• The Edit > Set Reference > Set to Existing Entity... command is used to set a reference to
an existing entity object, which has to be specified by type and primary key separated by #
(e.g. Point#1).

• The Edit > Set Reference > Set to New Object... command is used to set a reference to a
new object (not necessarily an entity object).

Field values can also be set using standard clipboard commands (Cut, Copy and Paste). For
example, an entity object can be selected and copied as a reference into the clipboard (in any
viewer window) and then pasted on a reference that has to be set.

The functionality of the Edit > Delete command depends on the context. Deleting a reference field
sets the value to null without deleting any referenced entity object. On the other hand, deleting
an entity object that is represented by a child of an Extent node in a viewer window deletes the
object itself from the database.

Editing Collections

Elements can be added to collections by using the following commands:

• The Edit > Add to Collection > Add Null command is used to add a null value.

• The Edit > Add to Collection > Add Existing Entity... command is used to add a reference to
an existing entity object, which has to be specified by type and primary key separated by #
(e.g. Point#1).

• The Edit > Add to Collection > Add New Object... command is used to add a reference to a
new object (not necessarily an entity object).

Elements can be removed from the collection using the Edit > Delete command.

The order of elements in an ordered collection can be modified by using the Edit > Move Element
commands.

Saving Changes

The Explorer manages an active transaction for every open database file. All the editing operations
are associated with the active transaction. The File > Save menu command commits the
transaction (applying all the changes to the database). The File > Discard Changes menu command
rolls back the transaction (discarding all the changes). After File > Save and File > Discard
Changes, the Explorer automatically begins a new transaction for the next editing session.

161

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Options and Settings

The Explorer settings are organized in the [Options] dialog box, which can be opened using the
Tools > Options... menu command.

The [Options] dialog box contains three tabbed pages: [General], [Fonts] and [Views].

The [General] Page

The [General] page contains the following settings:

• The [Encoding] combo box is useful when strings in the database are not encoded using
Unicode. ObjectDB stores String instances in the database using the same encoding
that they have in memory, which is usually Unicode. If you store String instances in the
database that have a different memory representation you have to set that encoding to
manage these strings in the Explorer. This setting is relevant only in the Explorer. In your
applications - retrieved String instances always have the same encoding as they had when
they have been persisted.

• The [Automatically open recently used database at startup] check box specifies whether or
not to open the last opened database when the Explorer starts.

• The [Table (instead of Tree) as a default viewer window] check box specifies if Table
windows should used by default rather than Tree windows.

• The [Darker colors for open branches in Tree windows] check box specifies whether or not
to use different colors for open and close nodes in Tree windows.

• The [Classpath for persistent classes and metadata] field specifies a path to locate
persistent classes and XML metadata. Setting this field is not mandatory because you can
browse and edit ObjectDB database files when class and metadata files are not available.
Some features of the Explorer, however, do require setting the classpath. For instance,
executing queries that include user defined methods can be supported by the Explorer only
when the code of these methods is available using the specified classpath.

The [Fonts] Page

The [Fonts] page is used to set the appearance of different Explorer components. Select one or
more elements on the left side and then use the combo boxes on the right side to choose font face,
font size, font style, background color and foreground color. Click the Reset button to apply the
default settings to the selected elements. To discard all changes and apply the default settings
to all the elements, click the Reset All button.

162

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

The [Views] Page

In the [Views] page you can select the persistent fields that are shown in the viewer windows and
their order of appearance. This may be useful when working with classes with a large number of
fields where displaying all the fields is problematic (for instance, in a row in the table viewer).

There are three views. The [Table View] determines which fields in each persistent class are
displayed as columns in Table viewer windows. The [Tree View] determines which fields are
displayed as child nodes when browsing persistent objects using the Tree viewer windows. The
[Summary] view is also used for the Tree viewer. It determines which fields are displayed as a
summary of a persistent object in the node that represents the object itself. The [Table View]
and the [Tree View] are initialized to contain all the persistent fields, but the [Summary] view is
initialized as an empty view. Therefore, unless set, persistent objects are presented in the Tree
viewer as an empty set of fields (using "{}").

To set a view for a class, first select one of the three supported views and then select the persistable
class in the list of classes. You can change the visibility of persistent fields of the class (in the
selected view) using the Left and Right arrow buttons to move fields between the [Shown Fields]
and the [Hidden Fields] lists. You can change the order of the shown fields by using the Up and
Down arrow buttons or the [Field Ordering] combo box. A view for a class can also be set by right
clicking one of its instances in the a viewer window (Table or Tree) and using the [Set View] context
menu command.

5.2 Database Server
ObjectDB Server is a tool that manages ObjectDB databases in a separate dedicated process,
making these databases accessible to client applications in other processes including ones on
other remote machines.

The main benefits in running an ObjectDB server and using the client-server mode are:

• The ability to access and use databases from different processes simultaneously.

• The ability to access and use databases on remote machines over the network.

Since client-server mode carries the overhead of TCP/IP communication between the client and
the server it is usually slower than embedded mode. In embedded mode, ObjectDB is integrated
as a library and runs within the application process, which is much more efficient. As a result,
embedded mode should be preferred when possible. For example, if an ObjectDB database is
accessed directly only by a web application, it should be embedded in that web application and
run within the web server process.

163

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Starting the ObjectDB Server

The ObjectDB Server tool is bundled in the objectdb.jar file.

You can run it from the command line as follows:

> java -cp objectdb.jar com.objectdb.Server

If objectdb.jar is not in the current directory a path to it has to be specified.

Running the server with no arguments displays the following usage message:

ObjectDB Server [version 2.8.0]
Copyright (c) 2019, ObjectDB Software, All rights reserved.

Usage: java com.objectdb.Server [options] start | stop | restart
options include:
 -conf <path> : specify a configuration file explicitly
 -port <port> : override configuration's server port
 -silent : avoid printing messages to the standard output
 -console : avoid showing the server tray icon

To start the server, use the start command line argument:

> java com.objectdb.Server start

The Server configuration is loaded automatically as explained in chapter 6. This can be overridden
by specifying a configuration path explicitly on the command line:

> java com.objectdb.Server -conf my_objectdb.conf start

The TPC/IP port on which the server listens for new connections is also specified in the Server
Configuration , but can be overridden by an explicit command line option:

> java com.objectdb.Server -port 8888 start

You can also use standard JVM arguments. For instance, you can increase the maximum JVM heap
size and improve performance by using HotSpot JVM server mode:

> java -server -Xmx512m com.objectdb.Server start

164

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Stopping and Restarting

To stop the server you can use the stop command:

> java com.objectdb.Server stop

To stop the server and then immediately start it again, use the restart command:

> java com.objectdb.Server restart

While an ObjectDB Server is running in the foreground the command window may be blocked.
Therefore, you may need a new command window for the stop and restart commands.

The –conf and –port options can also be used with the stop and restart commands.

Running the Server on Unix

On Unix you can use a shell script to run and manage the server. A sample script, server.sh, is
included in the bin directory. To use that script you have to edit the paths to the objectdb.jar
file and to the JVM.

Consult your operating system documentation on how to run the server in the background
(for instance, using the & character at the end of the command line), on how to start the server
automatically at boot time and stop it at shutdown time, and on how to restart the server
periodically (for instance, using crontab).

Running the Server on Windows

On Windows you can also run the server using the server.exe application, which is located in the
bin directory. For this to work the original structure of the ObjectDB directory must be preserved
because server.exe tries to locate and load the objectdb.jar from the same directory in which
it is started.

By default, server.exe starts the server using the following command:

> java -server -Xms32m -Xmx512m com.objectdb.Server start

When running server.exe you can specify arguments for the JVM as well as for the server
(excluding the start, stop and the restart server commands). For example:

165

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

> server.exe -client -Xmx256m -port 6666

Explicitly specified arguments override defaults, so the above run uses the following command:

> java -client -Xms32m -Xmx256m com.objectdb.Server -port 6666 start

When running, the server.exe application is represented by an icon in the Windows Tray.
Right click the icon and use the context menu to manage the server (stop, restart and start), and
to exit the server application.

5.3 Class Enhancer
ObjectDB Enhancer is a post compilation tool that improves performance by modifying the byte
code of compiled classes after compilation. Enhancement is mainly for user-defined persistable
classes (entity classes , embeddable classes and mapped superclasses), and is usually optional.

There is one case, however, where enhancement is required. Non persistable classes that access
directly (not through methods) persistent fields of enhanced classes must also be enhanced. It is
a good practice (and actually required by JPA but not enforced by ObjectDB) to avoid accessing
persistent fields of other classes directly. Rather, the accessor and mutator methods of the desired
class should be used (e.g. by using the get and set methods). If you follow this practice only
user defined persistable classes should need to be enhanced.

The enhancer silently ignores any specified class that does not need to be enhanced.

Enhancement improves efficiency in three ways:

• Enhanced code enables efficient tracking of persistent field modifications, avoiding the
need for snapshot comparison of entities (as explained in the chapter 3). This is done by
adding special code to enhanced classes that automatically notifies ObjectDB whenever a
persistent field is modified.

• Enhanced code enables lazy loading of entity objects. With no enhancement, only
persistent collection and map fields can be loaded lazily (by using proxy objects), but
persistent fields that reference entity objects directly (one-to-one relationship) have to be
loaded eagerly.

• Special optimized methods are added to enhanced classes as a replacement for using
reflection. These optimized methods are much faster than using reflection.

166

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Command Line Enhancement

ObjectDB Enhancer is a Java console application. It is contained in the objectdb.jar file.

You can run it from the command line as follows:

> java -cp objectdb.jar com.objectdb.Enhancer

If objectdb.jar is not in the current directory a path to it has to be specified.

Alternatively, you can run the Enhancer by using a shell script (enhancer.bat on Windows and
enhancer.sh on Unix/Linux) from the ObjectDB bin directory. To use that script you have to edit
the paths to theobjectdb.jar file and to the JVM.

A usage message is displayed if no arguments are specified on the command line:

ObjectDB Enhancer [version 2.8.0]
Copyright (c) 2019, ObjectDB Software. All rights reserved.

Usage: java com.objectdb.Enhancer [<options> | <class> | <filename>] ...
 <class> - name of a class (without .class suffix) in the CLASSPATH
 <filename> - path to class or jar file(s), *? wildcards supported
 <options> include:
 -cp <dir> : path to input user classes
 -pu <name> : persistence unit name
 -s : include sub directories in search
 -d <dir> : output path for enhanced classes

You can specify class files and jar files for enhancement explicitly or by using wildcards:

> java com.objectdb.Enhancer test/*.class Main.class pc.jar

If the -s option is specified, files in subdirectories are also searched and enhanced:

> java com.objectdb.Enhancer -s "*.class"

The "*.class" expression above is enclosed in quotes to prevent extraction by the shell.

The result output message lists the classes that have been enhanced:

167

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

[ObjectDB 2.8.0]
3 persistable types have been enhanced:
 test.MyEntity1
 test.MyEntity2
 test.MyEmbeddable
2 NON persistable types have been enhanced:
 Main
 test.Manager

You can also specify names of classes that can be located on the classpath using the syntax of
import statements (e.g. test.X for a single class, test.pc.* for a package):

> java com.objectdb.Enhancer test.X test.pc.*

Use the -pu option with the name of a persistence unit to enhance all the managed classes that
are defined in that persistence unit:

> java com.objectdb.Enhancer -pu my-pu

The -cp option can be used to specify an alternative classpath (the default is the classpath in
which the Enhancer itself is running):

> java com.objectdb.Enhancer -cp src test.X test.pc.*

By default, classes are enhanced in place, overriding the original class and jar files. Use the -d
option to redirect output to a different directory, thus keeping the original files unchanged:

> java com.objectdb.Enhancer -s "*.class" -d enhanced

Maven and ANT Enhancement

Enhancement can be integrated into the build process.

The following Maven build file defines a Java compiler plugin that includes enhancement:

168

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

<build>
 ...
 <plugins>
 ...
 <plugin>
 ...
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.6.0</version>
 <dependencies>
 <dependency>
 <groupId>com.objectdb</groupId>
 <artifactId>objectdb</artifactId>
 <version>2.7.4</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>

 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>

 <configuration>
 <mainClass>com.objectdb.Enhancer</mainClass>
 <!-- List of your packages -->
 <arguments>
 <argument>com.x.y.a.*</argument>
 <argument>com.x.y.b.*</argument>
 </arguments>
 </configuration>
 </plugin>
 ...
 </plugins>
 ...
</build>

169

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Complete ObjectDB Maven projects are available for download on the Tutorial pages:

• Quick Start with JPA

• JPA Web Application

• Java EE JPA

• Spring MVC and JPA

Similarly, enhancement can be also be integrated into an ANT build script, as so:

<java classname="com.objectdb.Enhancer" fork="true"
 classpath="c:\objectdb\bin\objectdb.jar">
 <arg line="-s c:\my-project\classes*"/>
</java>

Enhancement API

The ObjectDB Enhancer can also be invoked from Java code:

 com.objectdb.Enhancer.enhance("test.pc.*,test.X");

The same arguments that can be specified on the command line can also be passed to the
enhance method as a single string delimited by commas or spaces. In addition, a class loader for
loading classes for enhancement can be specified as a second argument:

 com.objectdb.Enhancer.enhance(
 "test.pc.*,test.X", text.X.class.getClassLoader());

The enhancement API and invocation of the Enhancer from Java code is useful, for instance, in
implementing custom enhancement ANT tasks.

Load Time (Java Agent) Enhancement

Instead of enhancing classes during build, classes can be enhanced when they are loaded
into the JVM by running the application with objectdb.jar as a Java agent. For example, if
objectdb.jar is located at c:\objectdb\bin, the JVM can be started by:

> java -javaagent:c:\objectdb\bin\objectdb.jar MyApplication

If the JVM is run with ObjectDB Enhancer as a Java Agent, every loaded class is checked and
automatically enhanced in memory (if applicable). Notice, however, that only classes which are

170

http://www.objectdb.com/tutorial/jpa/start/maven
http://www.objectdb.com/tutorial/jpa/web/maven
http://www.objectdb.com/tutorial/jpa/ee/maven
http://www.objectdb.com/tutorial/jpa/spring/maven

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

marked as persistable by annotations (e.g. @Entity, @Embeddable) are enhanced by the Java
Enhancer Agent. Therefore, when using this technique persistent fields may only be accessed
directly from annotated persistable user classes.

Enhancement by a Java agent is very easy to use and convenient during development. For release,
however, it is recommended to integrate the enhancement in the build process.

To use load time enhancement in web applications the web server or application server has to be
run with the Java agent JVM argument.

Setting a Java Agent Enhancer in the IDE

In Eclipse JVM arguments can be set globally at:

Window > Preferences > Java > Installed JREs > Edit > Default VM Arguments

or for a specific run configuration, at:

Run Configurations… > Arguments > VM arguments

In NetBeans JVM arguments can be set at the project properties:

Right clicking the project > Properties > Run > VM Options

Automatic Java Agent Enhancer

Unless configured otherwise , ObjectDB tries to load the Enhancer as a Java Agent and enhance
classes on the fly during load, even if a Java Agent is not specified explicitly.

This enhancement technique is inferior to the other techniques that are described above. First,
currently it only works on Sun JDK 6 or above (and not on JRE 6 for example). Second, classes that
are loaded into the JVM before accessing ObjectDB cannot be enhanced, so a careful organization
of the code is essential in order to make it work.

Therefore, specifying a Java Agent explicitly, as explained above should always be preferred.

5.4 Replication (Cluster)
ObjectDB supports master-slave replication (cluster). When replication (or clustering) is used,
the same database is managed on multiple machines (nodes), possibly in different geographic
locations. This could help in achieving high availability, fault tolerance and prompt disaster
recovery.

171

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

In master-slave replication the master node manages the main (master) database, which supports
Read / Write operations. The other (slave) nodes in the cluster manage identical copies of the
same database, which are limited to READ operations. Any update to the master database is
automatically propagated to the slave databases, keeping all the slave databases in the cluster
synchronized with the master database.

Setting a Master Database

A master ObjectDB database is an ordinary database, which is managed on an ordinary
ObjectDB database server. Any ObjectDB database on any server (but not in embedded mode)
can function as a master database in a cluster. Recording has to be enabled, but no other
preparations or settings are required.

Setting Slave Databases

Setting slave databases is very easy and only requires running an ObjectDB database server with
appropriate <replication> elements in the configuration :

<server>
 <connection port="6001" max="100" />
 <data path="$objectdb/db-files" />
 <replication url="objectdb://localhost:6000/my.odb;user=a;password=a" />
</server>

The url attribute of the <replication> element defines a master database. As demonstrated
above, a full url has to be specified including user and password attributes. The slave server
uses these details to connect to the master server in order to listen to updates. The updates are
automatically applied on the slave database, keeping it synchronized with the master database.

The same ObjectDB server can manage different types of databases, including master databases,
slave database (by using one or more <replication> elements) and also databases that are
not part of any cluster.

The replicated databases on the slave server are automatically generated under a special root
directory, $replication, under the server data root directory. Starting a new replication of an
existing master database requires copying the existing master database to the slave side.

172

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Connecting to the Database Cluster

The configuration above demonstrates a situation in which the master database is managed
by a server on localhost:6000 and the slave database is managed by a server on
localhost:6001.

In this case, the master database can be accessed ordinarily as follows:

EntityManagerFactory emf = Persistence.createEntityManagerFactory(
 "objectdb://localhost:6000/my.odb;user=a;password=a");

A slightly different url is required in order to access the slave database:

EntityManagerFactory emf = Persistence.createEntityManagerFactory(
 "objectdb://localhost:6001//localhost:6000/my.odb;user=b;password=b");

The above url specifies the location of the slave server on port 6001 as well as the location of
the master server on port 6000. Notice that the specified user and password attributes should
represent a user on the slave server rather than on the master server.

Finally, a composite url can also be used:

EntityManagerFactory emf = Persistence.createEntityManagerFactory(
 "objectdb://localhost:6000/my.odb;user=a;password=a|" +
 "objectdb://localhost:6001//localhost:6000/my.odb;user=b;password=b"
);

A composite url contains two or more database urls separated by '|'. Usually only the first url
(the master database in this example) is used. But when the first url becomes unavailable the
connection will automatically switch (temporarily) to the next available url (i.e. in this example to
the slave database) until the first url becomes available again.

5.5 Online Backup
An ObjectDB database can be backed up by simply copying or archiving the database file while the
database is offline (i.e. when it is not open in an ObjectDB server and not in use by any application),
since an ObjectDB database is stored as an ordinary file in the file system.

ObjectDB supports also online backup, for backing up an ObjectDB database while it is in use.
This is useful in applications that provide round the clock service (24/7/365) such as most web
applications.

173

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Starting Online Backup

The online backup can be started by executing a special query on an EntityManager (em)
that represents the connection (local or remote) to the database:

 em.createQuery("objectdb backup").getSingleResult();

The backup query string is always exactly "objectdb backup".

The backup is created under the backup root directory, which by default is $objectdb/backup,
i.e. a subdirectory of the ObjectDB home directory (and in client-server mode a subdirectory of
the ObjectDB home directory on the server side).

A new subdirectory with a name that reflects the current date and time (e.g. 201912312359)
is created under the backup root directory and the backup database file itself is created in that
subdirectory with the name of the original database file.

For example, backing up a test.odb database file using the code above could generate a backup
whose full path is c:\objectdb\backup\201912312359\test.odb (if c:\objectdb is the
ObjectDB home directory).

Custom Backup Target

A custom backup root directory can be specified by setting the target parameter before
executing the backup query:

 Query backupQuery = em.createQuery("objectdb backup");
 backupQuery.setParameter("target", new java.io.File("c:\\backup"));
 backupQuery.getSingleResult();

The code above, for instance, could create a backup at c:\backup\201912312359\test.odb
regardless of the ObjectDB home directory location.

Notice that if the target argument is specified as a java.io.File instance and em represents
a client-server connection then the backup file will be downloaded to the client and will be stored
on the client machine.

Alternatively, the backup target could be specified as a String value:

174

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

 Query backupQuery = em.createQuery("objectdb backup");
 backupQuery.setParameter("target", "backup");
 backupQuery.getSingleResult();

When a string is specified as a value for the target parameter it represents a path relative to the
ObjectDB home directory, and in client-server mode, relative to the ObjectDB home directory on
the server side.

For example, in client-server mode the code above could create the backup file on the server side
at backup/201912312359/test.odb under the ObjectDB home directory.

Online Backup Thread

Executing the backup query starts the backup asynchronously. Therefore, the backup query
returns after the backup is started but at that time the backup operation may still be in progress.

The backup query returns as a result a Thread instance that represents the backup run. This
thread can be used, for example, for waiting until the backup is completed.

 TypedQuery<Thread> backupQuery =
 em.createQuery("objectdb backup", Thread.class);
 Thread backupThread = backupQuery.getSingleResult();
 backupThread.join(); // Wait until the backup is completed.
 // Do something with the backup (e.g. upload it to Amazon S3).

Notice that in client-server mode the returned Thread is a local thread on the client side that
represents the real thread on the server side. Therefore, some operations (e.g. changing the
thread priority) will have no real effect in client-server mode.

5.6 Database Doctor
The ObjectDB Doctor tool provides two related services:

• Diagnosis and validation of an ObjectDB database file
Checks a given ObjectDB database file, verifies that it is healthy and valid, and if the file is
not valid (it is corrupted), produces detailed diagnosis report of all the errors.

• Repair of a corrupted ObjectDB database file
Repairs a corrupted ObjectDB database file by creating a new fresh database file and then
copying all the recoverable data in the corrupted database file to the new database file.

175

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Corrupted Database Files

Database files may be damaged and become corrupted due to various reasons:

• Hardware failure (e.g. a physical disk failure).

• Software failure (e.g. a bug of the Operating System, Java or ObjectDB).

• Copying a database file while it is open and in use.

• Network or I/O failure when copying, moving or transferring a database file.

• Transferring a database file over FTP in ASCII mode (BINARY mode should be used).

• Deleting an ObjectDB database recovery file or recording directory if it exists, or copying,
moving or transferring an ObjectDB database file without its recovery file or recording
directory.

• Power failure when the database is being updated - if recovery file is disabled.

• Using the database file simultaneously by two instances of the ObjectDB engine (not using
one server process), thus bypassing ObjectDB internal file lock protection.

• Modifying the database file externally not through ObjectDB (e.g. by malicious software
such as a computer virus).

Given all these causes it is clear that database files should be backed up regularly and often.
It is also recommended to validate production database files (or their backups) often by running
ObjectDB Doctor's diagnosis regularly in order to identify potential problems early on.

Running ObjectDB Doctor Diagnosis

The ObjectDB Doctor tool is bundled in the objectdb.jar file.

It can be run from the command line:

> java -cp objectdb.jar com.objectdb.Doctor my.odb

If objectdb.jar is not in the current directory a path to it has to be specified.

The tool main class is com.objectdb.Doctor and the only command line argument for running
a database diagnosis is the path to the database file (e.g. my.odb as shown above).

Diagnosis results are printed to the standard output.

176

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Running ObjectDB Doctor Repair

Running the ObjectDB Doctor in repair mode requires specifying two command line arguments:

> java -cp objectdb.jar com.objectdb.Doctor old.odb new.odb

The first argument (old.odb above) is the path to the original (corrupted) database file.
The second argument (new.odb above) is the path to the new database file to be generated by
the ObjectDB Doctor.

5.7 Transaction Replayer
ObjectDB can record its internal engine operations in special binary recording (journal) files.
Recording is enabled by default and can be disabled in the configuration.

The ObjectDB Replayer tool can apply recorded database operations on a matching database
backup (if available). This ability is useful for two different purposes:

• It enables recovery from a database failure by replaying the recorded operations.

• It enables reproducing problems during debugging by repeating a failure.

Backup & Recording Files

When recording is enabled , ObjectDB maintains for every database file a recording directory
whose name is the name of the database file with the odr (ObjectDB Recording) suffix.

By default, the recording directory is generated in the directory that contains the database file. If
the purpose of the recording is data durability it might be useful to keep the recording directory
on a different physical device by setting the path attribute in the configuration.

The recording directory contains two types of files:

• Backup files - with names of the form <transaction-id>.odb

• Recording files - with names of the form <transaction-id>.odr

A backup file is an ordinary ObjectDB database file that reflects the state of the database at the
end of a specific transaction. The ID of that transaction is used as the name of the file.

A recording file, with the same transaction ID in its name, contains database operations that have
been recorded after that transaction.

177

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Recorded operations can be replayed only if a proper backup file exists. Therefore, when recording
is enabled and the required backup file does not exist, ObjectDB automatically creates a backup
file as a copy of the existing ObjectDB database file when the database is opened. Preparation of
the initial backup might be slow if the database is large.

Running the ObjectDB Replayer

The ObjectDB Replayer tool is bundled in the objectdb.jar file.

It can be run from the command line:

> java -cp objectdb.jar com.objectdb.Replayer my.odb

If objectdb.jar is not in the current directory a path to it has to be specified.

The tool's main class is com.objectdb.Replayer and the required argument is the path to the
database file (e.g. my.odb as shown above). ObjectDB automatically locates the proper backup
and recording files and tries to apply all the recorded operations. The resulting database file is also
generated in the recording directory as <transaction-id>.odb, which specifies by its name
the last executed transaction.

The Replayer can also be run up to a specified transaction, e.g.:

> java -cp objectdb.jar com.objectdb.Replayer my.odb 1000

When a transaction ID is specified as a second argument the Replayer applies recorded operations
only until that specific transaction is reached.

If the above run succeeds, and all the operations until transaction 1000 are applied, the generated
result file is expected to be 1000.odb.

5.8 BIRT Reports Driver
The ObjectDB BIRT/ODA driver is an extension of the open source Business Intelligence and
Reporting Tools (BIRT) that adds support of ObjectDB as a data source and JPQL as a data set
query language.

For step by step instructions on using BIRT with ObjectDB see the Report Generation with BIRT
and JPA tutorial.

178

http://www.objectdb.com/tutorial/tool/report/birt
http://www.objectdb.com/tutorial/tool/report/birt

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

Driver Installation

The driver is available as an Eclipse for Java EE Developers extension. To install it:

• Open the [Install] dialog box by selecting Help > Install New Software...

• In the [Work with] field enter the ObjectDB update site url: http://www.objectdb.com/eclipse
and press ENTER.

• Select the ObjectDB Birt/ODA feature.

• Complete the installation by clicking Next twice, accepting the license agreement, clicking
Finish, and finally approving the installation and restarting the IDE.

Note: See this issue regarding matching the driver version to the ObjectDB server version when
using client-server mode.

179

http://www.objectdb.com/issue/1832

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

ObjectDB/JPA Data Source

To create an ObjectDB data source:

• Open the [New Data Source] dialog box by right clicking the Data Sources node in the [Data
Explorer] window and selecting New Data Source.

• Select ObjectDB Data Source from the list of available data source types.

• Enter data source name (e.g. ObjectDB Points) and click Next.

• Specify an ObjectDB connection url - either embedded (e.g. c:\points.odb) or client-server
(e.g. objectdb://localhost/points.odb;user=admin;password=admin).

180

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

• Click the Finish button to complete the creation of the ObjectDB data source.

Data Sets and JPQL

To create the data set:

• Open the [New Data Set] dialog box by right clicking the Data Sets node in the [Data
Explorer] window and selecting New Data Set.

• Select an ObjectDB data source (e.g. ObjectDB Points).

• Enter a data set name (e.g. Points by X) and click Next.

181

ObjectDB Developer's Guide Chapter 5 - Tools and Utilities

• Entry a JPQL or a JDOQL query and click Finish.

See the Report Generation with BIRT and JPA tutorial for more detailed instructions.

182

http://www.objectdb.com/tutorial/tool/report/birt

ObjectDB Developer's Guide Chapter 6 - Configuration

Chapter 6 - Configuration
The ObjectDB configuration file contains one <objectdb> root element with seven subelements:

<objectdb>
 <general> ... </general>
 <database> ... </database>
 <entities> ... </entities>
 <schema> ... </schema>
 <server> ... </server>
 <users> ... </users>
 <ssl> ... </ssl>
</objectdb>

Each one of these seven configuration elements is explained in a separate section:

• General Settings and Logging

• Database Management Settings

• Entity Management Settings

• Schema Update

• Server Configuration

• Server User List

• SSL Configuration

This page explains how ObjectDB configuration works in general.

The Configuration Path

By default, the configuration file is loaded from $objectdb/objectdb.conf where $objectdb
represents the ObjectDB home directory.

ObjectDB Home ($objectdb)

The value of $objectdb (the ObjectDB home directory) is derived from the location of the
objectdb.jar file. It is defined as the path to the directory in which objectdb.jar is located,
with one exception - if the name of that directory is bin, lib or build the parent directory is
considered to be the ObjectDB home directory ($objectdb).

As a result, $objectdb is also the installation directory of ObjectDB since objectdb.jar
is located in the bin directory under the installation directory. Notice, however, that moving

183

ObjectDB Developer's Guide Chapter 6 - Configuration

objectdb.jar to another location changes the value of $objectdb. For example, in a web
application, in which objectdb.jar is located in WEB-INF/lib, the ObjectDB home directory
($objectdb) is WEB-INF.

You can also define $objectdb explicitly by setting the "objectdb.home" system property:

 System.setProperty("objectdb.home", "/odb"); // new $objectdb

As with any other system property it can also be set as an argument to the JVM:

> java "-Dobjectdb.home=/odb" ...

The Configuration File

As noted above, by default the configuration file is loaded from $objectdb/objectdb.conf.

You can specify an alternative path by setting the "objectdb.conf" system property:

 System.setProperty("objectdb.conf", "/my/objectdb.conf");

It can also be set as an argument to the JVM:

> java "-Dobjectdb.conf=/my/objectdb.conf" ...

If a configuration file is not found default values are used.

General Configuration Considerations

The following rules apply to all the relevant configuration elements and attributes:

• $objectdb, representing the ObjectDB home directory, and $temp, representing the
system default temporary path, can be used in any path attribute value in the configuration
file.

• The mb and kb suffixes, representing megabytes and kilobytes (respectively), can be used
in any size value attribute in the configuration file.

• Appropriate file system permissions have to be set for all the paths that are specified in the
configuration file (for the process that runs ObjectDB).

184

ObjectDB Developer's Guide Chapter 6 - Configuration

6.1 General and Logging
The <general> configuration element specifies ObjectDB settings that are relevant to both the
server side and the client side.

The default configuration file contains the following <general> element:

<general>
 <temp path="$temp/ObjectDB" threshold="64mb" />
 <network inactivity-timeout="0" />
 <url-history size="50" user="true" password="true" />
 <log path="$objectdb/log/" max="8mb" stdout="false" stderr="false" />
 <log-archive path="$objectdb/log/archive/" retain="90" />
 <logger name="*" level="info" />
</general>

The <temp> element

 <temp path="$temp/ObjectDB" threshold="64mb" />

To meet memory constraints ObjectDB can use temporary files in processing of large data, such
as query results that contain millions of objects.

The <temp> element specifies temporary file settings:

• The path attribute specifies a directory in which the temporary files are generated.
The $temp prefix can be used to represent the system default temporary path, as
demonstrated above.

• Using RAM is much faster than using temporary files. Therefore, temporary files are only
used for data that exceeds a limit size that is specified by the threshold attribute. The mb
and kb suffixes represent megabytes and kilobytes (respectively).

The <network> element

 <network inactivity-timeout="0" />

The <network> element has one attribute, inactivity-timeout, which specifies when
network sockets become obsolete as a result of inactivity. The value is the timeout in seconds,
where 0 indicates never (no inactivity timeout).

185

ObjectDB Developer's Guide Chapter 6 - Configuration

The inactivity timeout (when > 0) is applied on both the server side and the client side, when using
client-server mode, and has no effect in embedded mode.

Specifying an inactivity timeout may solve firewall related issues. In general, if the firewall enforces
its own inactivity timeout on sockets a more restrictive inactivity timeout has to be specified for
ObjectDB to avoid using sockets that are expired by the firewall.

The <url-history> element

 <url-history size="50" user="true" password="true" />

ObjectDB manages a list of the recently accessed database urls for use by the Explorer.

• The size attribute specifies the maximum size of this list. This feature can be disabled by
specifying 0 as the maximum list size.

• The user attribute specifies if user names should be saved with urls (in client server
mode).

• The password attribute specifies if passwords should also be saved with urls.

Saving username and password with the url makes accessing recently used databases in the
Explorer easier.

The <log> element

 <log path="$objectdb/log/" max="8mb" stdout="false" stderr="false" />

General logging settings are specified in the <log> element:

• The path attribute specifies a directory in which the log files are generated. The $objectdb
prefix can be used to represent the ObjectDB installation directory, as demonstrated above.
If the path is empty ("") logging to file is disabled.

• Every day a new log file is generated with the name odb<yyyymmdd>.log (where
<yyyymmdd> represents the date). A new log file is also generated when the log file
exceeds the maximum size, which is specified by the max attribute.

• The stdout and stderr attributes specify if log messages should also be written to the
standard output and the standard error (respectively) in addition to writing to the log file.

186

ObjectDB Developer's Guide Chapter 6 - Configuration

The <log-archive> element

 <log-archive path="$objectdb/log/archive/" retain="90" />

Old log files are moved to an archive directory.

The <log-archive> element specifies the logging archive settings:

• The path attribute specifies an archive directory.

• The retain attribute specifies how many days to keep the archived log files. After that
period an archived log file is automatically deleted.

The <logger> elements

 <logger name="*" level="info" />

<logger> elements specify logging levels. The "*" logger, which can be shown in the default
configuration above, represents the entire ObjectDB system.

Additional <logger> elements can be added to override the default logging level for a specific
ObjectDB subsystem. The names of the subsystem loggers are currently undocumented and can
change at any time without notice.

The supported logging levels are:

• "fatal"

• "error"

• "warning"

• "info"

• "trace"

• "debug"

6.2 Database Management
The <database> configuration element specifies back end (database engine) settings which are
relevant on the server side and in embedded mode.

The default configuration file contains the following <database> element:

187

ObjectDB Developer's Guide Chapter 6 - Configuration

<database>
 <size initial="256kb" resize="256kb" page="2kb" />
 <recovery enabled="true" sync="false" path="." max="128mb" />
 <recording enabled="false" sync="false" path="." mode="write" />
 <locking version-check="true" />
 <processing cache="64mb" max-threads="10" synchronized="false" />
 <index-update enabled="true" priority="40" />
 <query-cache results="32mb" programs="500" />
 <extensions drop="temp,tmp" />
</database>

The <size> element

 <size initial="256kb" resize="256kb" page="2kb" />

The <size> element specifies the database file and page size settings:

• The initial attribute specifies an initial size of every new database file.

• The resize attribute specifies the size by which to extend the database file when
additional space is needed. Small initial size and resize values save space. Larger values
can improve performance by reducing file fragmentation (many resize operations might
cause fragmentation of the database file).

• The page attribute specifies the size of a page in a database file. The default of 2KB is
appropriate for most applications.

The <recovery> element

 <recovery enabled="true" sync="false" path="." max="128mb" />

When enabled, a recovery file is created by ObjectDB when a database is opened and deleted by
ObjectDB when the database is closed. The name of the recovery file is based on the name of the
database file with $ added at the end. Every transaction commit is first written to the recovery
file and then to the database. This way, if the system crashes during a write to the database, the
recovery file can be used to fix the database. Recovery from failure is automatically applied by
ObjectDB when a database is opened and a recovery file exists, indicating that it has not been
closed properly. Moving or copying a database file that has not been closed properly without its
recovery file may corrupt the database.

188

ObjectDB Developer's Guide Chapter 6 - Configuration

The <recovery> element specifies the recovery file settings:

• The enabled attribute (whose value is "true" or "false") specifies if recovery file is
used.

• The sync attribute (whose value is "true" or "false") specifies if physical writing is
required before commit returns. sync=false is much faster in writing data to a database,
but true might be safer in production.

• By default, the recovery file is generated in the directory of the database file, but any other
alternative path can be specified by the path attribute. Using separate storage devices
(e.g. disks) for the recovery file and the database file can improve performance.

• The max attribute is a hint that specifies the space that should be available for the recovery
file (ObjectDB might use more space when necessary).

The <recording> element

 <recording enabled="false" sync="false" path="." mode="all" />

Database engine operations can be recorded in files and later replayed using the ObjectDB
Replayer tool. Recording provides an alternative (which is sometimes more efficient) to recovery.
When recording is enabled and recovery is disabled, recorded operations are used to automatically
fix a database that has not been closed properly by running the Replayer tool. Recording might
also be useful for backup purposes and for debugging (by providing the ability to reproduce
problems by replay).

The <recording> element specifies the recording settings:

• The enabled attribute (whose value is "true" or "false") specifies if recording is used.

• The sync attribute (whose value is "true" or "false") specifies whether physical writing
is required for every recorded operation before returning to the caller.

• By default, a recording subdirectory is generated in the directory of the database file, but
any other alternative path can be specified by the path attribute.

• The mode attribute (whose value is "all" or "write") specifies which operations should
be recorded. For backup purposes only "write" operations (which modify the database)
have to be recorded. For debugging of query failure it might be necessary to record "all"
operations in order to reproduce the problem. Naturally, the recording operation is slower
and the recording files are much larger when "all" is used.

189

ObjectDB Developer's Guide Chapter 6 - Configuration

The <locking> element

 <locking version-check="true" />

The version-check attribute of the <locking> element specifies if optimistic locking is
enabled. Optimistic locking is completely automatic and enabled by default in ObjectDB,
regardless if a version field (which is required by some ORM JPA providers) is defined in the entity
class or not.
It can be disabled by setting the version-check attribute to false.

The <processing> element

 <processing cache="64mb" max-threads="10" />

The <processing> element specifies miscellaneous database engine settings:

• The cache attribute is a hint that specifies the the amount of memory that is used for
caching pages of the database file.

• The max-threads attribute specifies the maximum number of concurrent threads that can
be served by the database engine simultaneously. When the specified maximum is reached
- new requests are pending until previous requests are completed. The optimal number is
usually larger than the number of available CPU cores, but not too large, to avoid thread
competition that leads to poor performance.

The <index-update> element

 <index-update enabled="true" priority="40" />

The <index-update> element specifies how new defined indexes are handled. When a new index
is defined for an existing entity class that already has instances stored in the database, the index
cannot be used until all the existing instances are indexed. Indexing large amount of data may
take considerable processing time.

• The enabled attribute (whose value is "true" or "false") specifies if existing data should be
indexed automatically by ObjectDB in the background, a soon as new indexes are detected,
in order to activate these new indexes.

• The priority attribute specifies the speed of the index building background process
as a number between 10 and 70, indicating processing rate between 10% to 70% of the
maximum database writing rate.

190

ObjectDB Developer's Guide Chapter 6 - Configuration

As soon as the background index activation is completed, ObjectDB can start using the new indexes
to accelerate execution of relevant queries.

The <query-cache> element

 <query-cache results="32mb" programs="500" />

The <query-cache> element specifies settings of the two cache mechanisms that ObjectDB
manages for queries:

• The results attribute specifies the size of the query result cache. Caching results is very
useful for recurring queries with identical arguments. As long as the relevant data in the
database is unchanged cached results can be returned instead of running queries.

• The programs attribute specifies how many compiled query programs should be cached.
Cached query programs may eliminate the need to compile queries again but the queries
still have to be executed, so cached programs are less efficient than cached results.
However, cached query programs can also be used for recurring queries with different
arguments and are not affected by most database updates (except schema updates).

The <extensions> element

 <extensions drop="temp,tmp" />

The drop attribute of the <extensions> element specifies a list of file name extensions that can
be used for temporary databases (usually in tests). The content of these temporary databases is
deleted when using the drop url connection parameter.

The <activation> elements

 <activation code="XXXX-XXXX-XXXX-XXXX-XXXX" />

Removing ObjectDB evaluation restrictions (of 10 entity classes and 1,000,000 entity objects
per database) requires specifying a valid activation code using an <activation> element.

Activation codes are generated by running the Activator utility:

> java -cp objectdb.jar com.objectdb.Activator

from the command line.

191

ObjectDB Developer's Guide Chapter 6 - Configuration

Every machine requires a specific activation code, but multiple <activation> elements can be
specified in the same configuration. This way the same configuration file (with multiple activation
codes) can be used on multiple machines.

Note: If you are using an ObjectDB OEM license - you should only activate ObjectDB on developer
machines. Classes that are enhanced by the ObjectDB Enhancer (when using the OEM license) are
signed and excluded from evaluation restrictions. Therefore, when ObjectDB runtime is bundled
in a product that uses only signed enhanced persistable classes - activation by end users is
unnecessary.

6.3 Entity Management
The <entities> configuration element specifies front end settings that are relevant on the client
side and in embedded mode.

The default configuration file contains the following <entities> element:

<entities>
 <enhancement agent="true" reflection="warning" />
 <cache ref="weak" level2="0mb" />
 <fetch hollow="true" />
 <persist serialization="false" />
 <cascade-persist always="auto" on-persist="false" on-commit="true" />
 <dirty-tracking arrays="false" />
</entities>

The <enhancement> element

 <enhancement agent="true" reflection="warning" />

The <enhancement> element specifies enhancement related settings:

• The agent attribute (whose value is "true" or "false") specifies whether the Enhancer
Agent should be loaded to enhance persistable types on the fly, even if it is not specified
explicitly at the command line. This is currently supported only for JDK 6.0 (not JRE) or
above.

192

ObjectDB Developer's Guide Chapter 6 - Configuration

• The reflection attribute specifies how non enhanced classes are handled. ObjectDB can
manage non enhanced classes by using reflection at the cost of performance. The possible
values of the reflection attribute represent different policies:

• "error" - all persistable classes must be enhanced - otherwise an exception is
thrown.

• "warning" - a warning is logged for every non enhanced class.

• "ignore" - reflection is used for non enhanced classes - with no error or warning.

• "force" - reflection is used even for enhanced classes (for troubleshooting).

The <cache> element

 <cache ref="weak" level2="0mb" />

The <cache> element specifies settings of the two cache mechanisms for entities:

• The ref attribute specifies the reference type for holding non dirty entities in the
persistence context of the EntityManager (which serves as a first level cache). The
valid values are "weak", "soft" and "strong". Modified entities are always held by
strong references in the persistence context (until commit or flush), regardless of this
setting.

• The level2 attribute specifies the size of the shared level 2 cache that is managed by the
EntityManagerFactory and shared by all its EntityManager instances. The level 2
cache is disabled by specifying 0 or 0mb.

The <fetch> element

<fetch hollow="true" />

The hollow attribute of the <fetch> element (whose value is "true" or "false") specifies if
lazy loading of entity objects content is enabled. Instantiating entity objects as hollow, and loading
their persistent content lazily, when they are accessed, could improve performance. However, for
some applications disabling this ability could be more efficient.

The <persist> element

 <persist serialization="false" />

193

ObjectDB Developer's Guide Chapter 6 - Configuration

The serialization attribute of the <persist> element (whose value is "true" or "false")
specifies if serialization should be used as a fallback persisting method for instances of serializable
types that are non persistable otherwise (e.g. a user defined class, which is not an entity class,
mapped super class or embeddable class).

The <cascade-persist> element

 <cascade-persist always="auto" on-persist="false" on-commit="true" />

The <cascade-persist> element specifies global settings for cascading persist operations:

• The always attribute (whose value is "true", "false" or "auto") specifies if persist
operations should always be cascaded for every entity, regardless local cascade settings.
The "auto" value functions as "true" when using JDO and as "false" when using JPA.

• The on-persist attribute specifies whether cascading (as a result of either global or local
setting) should be applied during persist.

• The on-commit attribute specifies whether cascading (as a result of either global or local
setting) should be applied during commit and flush.

Note: Both JPA and JDO require cascading the persist operation twice, first during persist and
later on commit or flush. Usually, commit time only cascade (which is more efficient than double
cascade) is sufficient.

The <dirty-tracking> element

 <dirty-tracking arrays="false" />

The arrays attribute of the <dirty-tracking> element specifies if modifications to array cells
should be tracked automatically in enhanced classes. See the Updating Entities section in chapter
3 for more details.

6.4 Schema Update
The <schema> configuration element supports renaming packages, classes and fields in ObjectDB
databases as a complementary operation to renaming or moving these elements in the IDE during
source code refactoring. Only these schema changes are specified in the configuration file. As
explained in chapter 2 , other schema changes are handled by ObjectDB automatically.

194

ObjectDB Developer's Guide Chapter 6 - Configuration

Note: Extreme caution is required when persistable classes are renamed or moved to another
package. Running the application with persistable classes that have been renamed or moved in
the IDE, with no matching schema configuration - will create new, separate persistable classes
with no instances. Therefore, you should backup your database files before renaming or moving
persistable classes and you must verify that after such changes the application is run only with
the configuration that matches these changes exactly.

The default configuration file contains an empty <schema> element. If the <schema> element is
not empty ObjectDB tries to apply the specified schema updates every time a database is opened.
When using client-server mode the <schema> instructions should usually be located on the client
side where the up to date classes are located.

The following <schema> element demonstrates the supported schema update abilities:

<schema>
 <package name="com.example.old1" new-name="com.example.new1" />
 <package name="com.example.old2" new-name="com.example.new2">
 <class name="A" new-name="NewA" />
 <class name="B">
 <field name="f1" new-name="newF1" />
 <field name="f2" new-name="newF2" />
 </class>
 </package>
 <package name="com.example.old3">
 <class name="C" new-name="NewC" >
 <field name="f3" new-name="newF3" />
 </class>
 <class name="C$E" new-name="NewC$E" />
 </package>
</schema>

The hierarchy, as demonstrated above, is strict:

• <package> elements are always direct child elements of the <schema> element.

• <class> elements are always direct child elements of <package> elements.

• <field> elements are always direct child elements of <class> elements.

195

ObjectDB Developer's Guide Chapter 6 - Configuration

The <package> elements

 <package name="com.example.old1" new-name="com.example.new1" />
 <package name="com.example.old2" new-name="com.example.new2">
 ...
 </package>
 <package name="com.example.old3">
 ...
 </package>

A <package> element has two roles:

• If the optional new-name attribute is specified the package name is changed from the
original name, which is specified by the required name attribute, to the new name. All the
classes in that package are moved to the new package name.

• In addition, whether or not a new-name attribute is specified a <package> element serves
as a container of <class> subelements for renaming classes and fields in that package.

The <package> elements above specify renaming of the com.example.old1 and
com.example.old2 packages. The com.example.old3 package is not renamed, but rename
operations are specified for some of its classes.

The <class> elements

 <class name="A" new-name="NewA" />
 <class name="B">
 ...
 </class>

 <class name="C" new-name="NewC" >
 ...
 </class>
 <class name="C$E" new-name="NewC$E" />

A <class> element has two roles:

• If the optional new-name attribute is specified the class name is changed from the original
name, which is specified by the required name attribute, to the new name. The value of the
name attribute must be unqualified (with no package name) because the package name
is already specified in the containing <package> element. The value of the new-name

196

ObjectDB Developer's Guide Chapter 6 - Configuration

attribute can be either qualified or unqualified. If it is unqualified (no package name) the
new-name value of the containing <package> element is used, if it exists, or if no new-
name is specified in the <package> element the name value of the <package> element is
used.

• In addition, whether or not a new-name attribute is specified a <class> element serves as
a container of <field> subelements for renaming fields in that class.

The <class> elements above specify renaming of the A, C and C.E (which has to be written as C
$E) classes. Class B is not renamed but rename operations are specified for some of its fields.

The <field> elements

 <field name="f1" new-name="newF1" />
 <field name="f2" new-name="newF2" />

 <field name="f3" new-name="newF3" />

The <field> element specifies renaming a persistent field (or a property). Both attributes, the
name, which specifies the old name, and new-name, which specifies the new name, are required.

6.5 Server Configuration
The <server> configuration element specifies settings for running an ObjectDB Server.

The server is affected also by other elements in the configuration file, particularly the <users>
and the <ssl> configuration elements.

The default configuration file contains the following <server> element:

<server>
 <connection port="6136" max="0" />
 <data path="$objectdb/db-files" />
 <!--
 <replication url="objectdb://localhost/my.odb;user=admin;password=admin" />
 -->
</server>

197

ObjectDB Developer's Guide Chapter 6 - Configuration

The <connection> element

 <connection port="6136" max="0" />

The <connection> element specifies how clients can connect to the server:

• The port attribute specifies a TPC port on which the server is listening for new
connections. Usually the default port 6136 should be specified. If another port is specified
it also has to be specified by clients in the url connection string when connecting to the
database (as explained in the JPA Overview section in chapter 3).

• The max attribute specifies the maximum number of simultaneous connections that are
accepted by the server. A request for a connection that exceeds the maximum throws an
exception on the client side. 0 indicates no maximum connections limit.

The <data> element

 <data path="$objectdb/db-files" />

The <data> element has one attribute, path, which specifies the location of ObjectDB databases
that the server manages. The $objectdb prefix, if specified (as demonstrated above), represents
the ObjectDB home directory.

The data path of an ObjectDB server is similar to the document root directory of a web server.
Every database file in the data directory and in its subdirectories can be accessed by the server.
Appropriate file system permissions have to be set on the data directory, its subdirectories and
database files, to enable operations of the server process.

When connecting to the server the path that is specified in the url connection is resolved relative
to the data path. For example, "objectdb://localhost/my/db.odb" refers to a database file
db.odb in a subdirectory 'my' of the data directory.

The <replication> elements

<replication url="objectdb://localhost/my.odb;user=admin;password=admin" />

The <replication> elements are optional elements that define replication of ObjectDB
databases in a master-slave cluster. A <replication> element is only required on the slave
server to define the replicated slave database. More details on replication are provided on the
Database Replication and Clustering page.

198

ObjectDB Developer's Guide Chapter 6 - Configuration

6.6 Server User List
The <users> configuration element lists the users that are allowed to access the ObjectDB Server
and specifies their specific settings (username, password, permissions, quota).

The default configuration file contains the following <users> element:

<users>
 <user username="admin" password="admin" ip="127.0.0.1" admin="true">
 <dir path="/" permissions="access,modify,create,delete" />
 </user>
 <user username="$default" password="$$$###">
 <dir path="/$user/" permissions="access|modify|create|delete">
 <quota directories="5" files="20" disk-space="5mb" />
 </dir>
 </user>
 <user username="user1" password="user1" />
</users>

The <user> elements

 <user username="admin" password="admin" ip="127.0.0.1" admin="true">
 ...
 </user>

 <user username="$default" password="$$$###">
 ...
 </user>

 <user username="user1" password="user1" />

Every user is represented by a single <user> element:

• The required username and password attributes specify a username and a password that
have to be provided when the user connects to the server.

• The optional ip attribute, if specified, restricts the user to connect to the server only
from the specified IP addresses. For instance, "127.0.0.1" (which represents the local
machine), as shown above, restricts the user to the machine on which the server is running.
Multiple IP addresses can also be specified in a comma separated
list and using a hyphen (-) to indicate a range. For example, a value

199

ObjectDB Developer's Guide Chapter 6 - Configuration

"192.18.0.0-192.18.194.255,127.0.0.1" allows connecting from any IP address in
the range of 192.18.0.0 to 192.18.194.255, as well as from 127.0.0.1.

• The admin attribute (whose value is "true" or "false") specifies if the user is a
superuser. A superuser is authorized to manage server settings using the ObjectDB
Explorer.

A value of "$default" for the username attribute indicates a virtual master user definition. All
the settings of that master definition are automatically inherited by all the other user definitions
but the master user itself cannot be used to connect to the database.

The <dir> element

 <dir path="/" permissions="access,modify,create,delete" />

 <dir path="/$user/" permissions="access|modify|create|delete">
 <quota directories="5" files="20" disk-space="5mb" />
 </dir>

Every <user> element may contain one or more <dir> subelements indicating which paths under
the server data directory the user is allowed to access:

• The required path attribute specifies a directory path relative to the root data directory.
Permission to access a directory always includes the permission to access the whole tree of
subdirectories under that directory. Therefore, path "/" indicates permission to access any
directory in the data directory.
$user represents the user's username and if specified for the master ("$default") it is
interpreted by every concrete user definition as the real username of that user. This way, it
is easy to allocate a private directory for every user.

• The required permissions attribute specifies which database file permissions are
granted.
The comma separated string value may contain the following permissions:

• access - permission to open a database for read.

• modify - permission to modify the content of a database.

• create - permission to create new subdirectories and database files.

• delete - permission to delete subdirectories and database files.

If no database file permissions are specified the user is still allowed to view the directory content
(using the Explorer) but cannot open database files or modify anything.

200

ObjectDB Developer's Guide Chapter 6 - Configuration

The <quota> element

 <quota directories="5" files="20" disk-space="5mb" />

Every <dir> element may contain one optional <quota> subelement, specifying restrictions on
the directory content:

• The directories attribute specifies how many subdirectories are allowed under that
directory (nested subdirectories are also allowed).

• The files attribute specifies how many database files the directory may contain.

• The disk-space attribute specifies maximum disk space for all the files in that directory.

6.7 SSL Configuration
The <ssl> configuration element specifies Secure Sockets Layer (SSL) settings for secure
communication in client-server mode, for both the client side and the server side.

The default configuration file contains the following <ssl> element:

<ssl enabled="false">
 <server-keystore path="$objectdb/ssl/server-kstore" password="pwd" />
 <client-truststore path="$objectdb/ssl/client-tstore" password="pwd" />
</ssl>

The enabled attribute of the ssl element (whose value is "true" or "false") specifies if SSL
is used. As shown above, SSL is disabled by default. It could be enabled when accessing remote
ObjectDB databases over an insecure network such as the Internet.

SSL Keystore and Truststore Files

To use SSL you have to generate at least two files:

• A Keystore file that functions as a unique signature of your server. This file contains general
details (such as a company name), an RSA private key and its corresponding public key
(the SSL protocol is based on the RSA algorithm).

• A Truststore file that functions as a certificate that enables the client to validate the server
signature. This file is generated from the Keystore file by omitting the private key (it still
contains the general information and the public key).

You can generate these files using the JDK keytool utility:

201

ObjectDB Developer's Guide Chapter 6 - Configuration

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Using these Keystore and Trustore files a client can verify during SSL handshaking that it is
connected to the real server and not to another server in the way that is pretending to be the real
server (what is known as "a man in the middle attack"). The server, on the other hand, might be
less selective and allow connections from any machine as long as a valid username and password
are provided. If an authentication of the client machine by the server is also required a Keystore
file (which might be different from the server Keystore) has to be installed on the client machine
and its corresponding Trustore file has to be installed on the server machine.

Setting the Configuration

<ssl enabled="true">
 <server-keystore path="$objectdb/ssl/server-kstore" password="pwd" />
 <server-truststore path="$objectdb/ssl/server-tstore" password="pwd" />
 <client-keystore path="$objectdb/ssl/client-kstore" password="pwd" />
 <client-truststore path="$objectdb/ssl/client-tstore" password="pwd" />
</ssl>

To use SSL the enabled attribute of the ssl element has to be set to true.

Every keystore / truststore file is represented by a separate child element with two required
attributes: path, which specifies the path to the file, and password, which specifies a password
that is needed in order to use the file.

Usually only the server-keystore element (for the server) and the client-truststore
element (for the client) are needed (as shown above).

The other two elements, client-keystore and server-truststore, are needed only when
the client is also signed (as explained above).

202

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

	Preface
	Chapter 1 - Quick Tour
	1.1 Entity Class
	1.2 Database Connection
	1.3 CRUD Operations
	1.4 What is Next?

	Chapter 2 - Entity Classes
	2.1 Persistable Types
	2.2 Entity Fields
	2.3 Primary Key
	2.4 Generated Values
	2.5 Index Definition
	2.6 Schema Evolution
	2.7 Persistence Unit

	Chapter 3 - Using JPA
	3.1 Database Connection
	3.2 Managed Entity Objects
	3.3 CRUD Operations
	3.3.1 Storing Entities
	3.3.2 Retrieving Entities
	3.3.3 Updating Entities
	3.3.4 Deleting Entities

	3.4 Advanced Topics
	3.4.1 Detached Entities
	3.4.2 Lock Management
	3.4.3 Lifecycle Events
	3.4.4 Shared L2 Cache
	3.4.5 Metamodel API

	Chapter 4 - JPA Queries
	4.1 Query API
	4.1.1 Running Queries
	4.1.2 Query Parameters
	4.1.3 Named Queries
	4.1.4 Criteria Query API
	4.1.5 Setting & Tuning

	4.2 Query Structure
	4.2.1 JPQL SELECT
	4.2.2 JPQL FROM
	4.2.3 JPQL WHERE
	4.2.4 JPQL GROUP BY
	4.2.5 JPQL ORDER BY
	4.2.6 DELETE Queries
	4.2.7 UPDATE Queries

	4.3 Query Expressions
	4.3.1 JPQL Literals
	4.3.2 JPQL Paths and Types
	4.3.3 Numbers in JPQL
	4.3.4 Strings in JPQL
	4.3.5 Date and Time in JPQL
	4.3.6 Collections in JPQL
	4.3.7 Comparison Operators
	4.3.8 Logical Operators

	Chapter 5 - Tools and Utilities
	5.1 Database Explorer
	5.2 Database Server
	5.3 Class Enhancer
	5.4 Replication (Cluster)
	5.5 Online Backup
	5.6 Database Doctor
	5.7 Transaction Replayer
	5.8 BIRT Reports Driver

	Chapter 6 - Configuration
	6.1 General and Logging
	6.2 Database Management
	6.3 Entity Management
	6.4 Schema Update
	6.5 Server Configuration
	6.6 Server User List
	6.7 SSL Configuration

